在好例子网,分享、交流、成长!
您当前所在位置:首页Python 开发实例Python语言基础 → 量子计算与量子信息.pdf

量子计算与量子信息.pdf

Python语言基础

下载此实例
  • 开发语言:Python
  • 实例大小:6.62M
  • 下载次数:23
  • 浏览次数:126
  • 发布时间:2020-12-22
  • 实例类别:Python语言基础
  • 发 布 人:skydee
  • 文件格式:.pdf
  • 所需积分:8
 相关标签: 信息 计算

实例介绍

【实例简介】

量子计算与量子信息

【实例截图】

from clipboard

【核心代码】

Contents
Introduction to the Tenth Anniversary Edition page xvii
Afterword to the Tenth Anniversary Edition xix
Preface xxi
Acknowledgements xxvii
Nomenclature and notation xxix
Part I Fundamental concepts 1
1 Introduction and overview 1
1.1 Global perspectives 1
1.1.1 History of quantum computation and quantum
information 2
1.1.2 Future directions 12
1.2 Quantum bits 13
1.2.1 Multiple qubits 16
1.3 Quantum computation 17
1.3.1 Single qubit gates 17
1.3.2 Multiple qubit gates 20
1.3.3 Measurements in bases other than the computational basis 22
1.3.4 Quantum circuits 22
1.3.5 Qubit copying circuit? 24
1.3.6 Example: Bell states 25
1.3.7 Example: quantum teleportation 26
1.4 Quantum algorithms 28
1.4.1 Classical computations on a quantum computer 29
1.4.2 Quantum parallelism 30
1.4.3 Deutsch’s algorithm 32
1.4.4 The Deutsch–Jozsa algorithm 34
1.4.5 Quantum algorithms summarized 36
1.5 Experimental quantum information processing 42
1.5.1 The Stern–Gerlach experiment 43
1.5.2 Prospects for practical quantum information processing 46
1.6 Quantum information 50
1.6.1 Quantum information theory: example problems 52
1.6.2 Quantum information in a wider context 58
x Contents
2 Introduction to quantum mechanics 60
2.1 Linear algebra 61
2.1.1 Bases and linear independence 62
2.1.2 Linear operators and matrices 63
2.1.3 The Pauli matrices 65
2.1.4 Inner products 65
2.1.5 Eigenvectors and eigenvalues 68
2.1.6 Adjoints and Hermitian operators 69
2.1.7 Tensor products 71
2.1.8 Operator functions 75
2.1.9 The commutator and anti-commutator 76
2.1.10 The polar and singular value decompositions 78
2.2 The postulates of quantum mechanics 80
2.2.1 State space 80
2.2.2 Evolution 81
2.2.3 Quantum measurement 84
2.2.4 Distinguishing quantum states 86
2.2.5 Projective measurements 87
2.2.6 POVM measurements 90
2.2.7 Phase 93
2.2.8 Composite systems 93
2.2.9 Quantum mechanics: a global view 96
2.3 Application: superdense coding 97
2.4 The density operator 98
2.4.1 Ensembles of quantum states 99
2.4.2 General properties of the density operator 101
2.4.3 The reduced density operator 105
2.5 The Schmidt decomposition and purifications 109
2.6 EPR and the Bell inequality 111
3 Introduction to computer science 120
3.1 Models for computation 122
3.1.1 Turing machines 122
3.1.2 Circuits 129
3.2 The analysis of computational problems 135
3.2.1 How to quantify computational resources 136
3.2.2 Computational complexity 138
3.2.3 Decision problems and the complexity classes P and NP 141
3.2.4 A plethora of complexity classes 150
3.2.5 Energy and computation 153
3.3 Perspectives on computer science 161
Part II Quantum computation 171
4 Quantum circuits 171
4.1 Quantum algorithms 172
4.2 Single qubit operations 174
Contents xi
4.3 Controlled operations 177
4.4 Measurement 185
4.5 Universal quantum gates 188
4.5.1 Two-level unitary gates are universal 189
4.5.2 Single qubit and CNOT gates are universal 191
4.5.3 A discrete set of universal operations 194
4.5.4 Approximating arbitrary unitary gates is generically hard 198
4.5.5 Quantum computational complexity 200
4.6 Summary of the quantum circuit model of computation 202
4.7 Simulation of quantum systems 204
4.7.1 Simulation in action 204
4.7.2 The quantum simulation algorithm 206
4.7.3 An illustrative example 209
4.7.4 Perspectives on quantum simulation 211
5 The quantum Fourier transform and its applications 216
5.1 The quantum Fourier transform 217
5.2 Phase estimation 221
5.2.1 Performance and requirements 223
5.3 Applications: order-finding and factoring 226
5.3.1 Application: order-finding 226
5.3.2 Application: factoring 232
5.4 General applications of the quantum Fourier
transform 234
5.4.1 Period-finding 236
5.4.2 Discrete logarithms 238
5.4.3 The hidden subgroup problem 240
5.4.4 Other quantum algorithms? 242
6 Quantum search algorithms 248
6.1 The quantum search algorithm 248
6.1.1 The oracle 248
6.1.2 The procedure 250
6.1.3 Geometric visualization 252
6.1.4 Performance 253
6.2 Quantum search as a quantum simulation 255
6.3 Quantum counting 261
6.4 Speeding up the solution of NP-complete problems 263
6.5 Quantum search of an unstructured database 265
6.6 Optimality of the search algorithm 269
6.7 Black box algorithm limits 271
7 Quantum computers: physical realization 277
7.1 Guiding principles 277
7.2 Conditions for quantum computation 279
7.2.1 Representation of quantum information 279
7.2.2 Performance of unitary transformations 281
xii Contents
7.2.3 Preparation of fiducial initial states 281
7.2.4 Measurement of output result 282
7.3 Harmonic oscillator quantum computer 283
7.3.1 Physical apparatus 283
7.3.2 The Hamiltonian 284
7.3.3 Quantum computation 286
7.3.4 Drawbacks 286
7.4 Optical photon quantum computer 287
7.4.1 Physical apparatus 287
7.4.2 Quantum computation 290
7.4.3 Drawbacks 296
7.5 Optical cavity quantum electrodynamics 297
7.5.1 Physical apparatus 298
7.5.2 The Hamiltonian 300
7.5.3 Single-photon single-atom absorption and
refraction 303
7.5.4 Quantum computation 306
7.6 Ion traps 309
7.6.1 Physical apparatus 309
7.6.2 The Hamiltonian 317
7.6.3 Quantum computation 319
7.6.4 Experiment 321
7.7 Nuclear magnetic resonance 324
7.7.1 Physical apparatus 325
7.7.2 The Hamiltonian 326
7.7.3 Quantum computation 331
7.7.4 Experiment 336
7.8 Other implementation schemes 343
Part III Quantum information 353
8 Quantum noise and quantum operations 353
8.1 Classical noise and Markov processes 354
8.2 Quantum operations 356
8.2.1 Overview 356
8.2.2 Environments and quantum operations 357
8.2.3 Operator-sum representation 360
8.2.4 Axiomatic approach to quantum operations 366
8.3 Examples of quantum noise and quantum operations 373
8.3.1 Trace and partial trace 374
8.3.2 Geometric picture of single qubit quantum
operations 374
8.3.3 Bit flip and phase flip channels 376
8.3.4 Depolarizing channel 378
8.3.5 Amplitude damping 380
8.3.6 Phase damping 383
Contents xiii
8.4 Applications of quantum operations 386
8.4.1 Master equations 386
8.4.2 Quantum process tomography 389
8.5 Limitations of the quantum operations formalism 394
9 Distance measures for quantum information 399
9.1 Distance measures for classical information 399
9.2 How close are two quantum states? 403
9.2.1 Trace distance 403
9.2.2 Fidelity 409
9.2.3 Relationships between distance measures 415
9.3 How well does a quantum channel preserve information? 416
10 Quantum error-correction 425
10.1 Introduction 426
10.1.1 The three qubit bit flip code 427
10.1.2 Three qubit phase flip code 430
10.2 The Shor code 432
10.3 Theory of quantum error-correction 435
10.3.1 Discretization of the errors 438
10.3.2 Independent error models 441
10.3.3 Degenerate codes 444
10.3.4 The quantum Hamming bound 444
10.4 Constructing quantum codes 445
10.4.1 Classical linear codes 445
10.4.2 Calderbank–Shor–Steane codes 450
10.5 Stabilizer codes 453
10.5.1 The stabilizer formalism 454
10.5.2 Unitary gates and the stabilizer formalism 459
10.5.3 Measurement in the stabilizer formalism 463
10.5.4 The Gottesman–Knill theorem 464
10.5.5 Stabilizer code constructions 464
10.5.6 Examples 467
10.5.7 Standard form for a stabilizer code 470
10.5.8 Quantum circuits for encoding, decoding, and
correction 472
10.6 Fault-tolerant quantum computation 474
10.6.1 Fault-tolerance: the big picture 475
10.6.2 Fault-tolerant quantum logic 482
10.6.3 Fault-tolerant measurement 489
10.6.4 Elements of resilient quantum computation 493
11 Entropy and information 500
11.1 Shannon entropy 500
11.2 Basic properties of entropy 502
11.2.1 The binary entropy 502
11.2.2 The relative entropy 504
xiv Contents
11.2.3 Conditional entropy and mutual information 505
11.2.4 The data processing inequality 509
11.3 Von Neumann entropy 510
11.3.1 Quantum relative entropy 511
11.3.2 Basic properties of entropy 513
11.3.3 Measurements and entropy 514
11.3.4 Subadditivity 515
11.3.5 Concavity of the entropy 516
11.3.6 The entropy of a mixture of quantum states 518
11.4 Strong subadditivity 519
11.4.1 Proof of strong subadditivity 519
11.4.2 Strong subadditivity: elementary applications 522
12 Quantum information theory 528
12.1 Distinguishing quantum states and the accessible information 529
12.1.1 The Holevo bound 531
12.1.2 Example applications of the Holevo bound 534
12.2 Data compression 536
12.2.1 Shannon’s noiseless channel coding theorem 537
12.2.2 Schumacher’s quantum noiseless channel coding theorem 542
12.3 Classical information over noisy quantum channels 546
12.3.1 Communication over noisy classical channels 548
12.3.2 Communication over noisy quantum channels 554
12.4 Quantum information over noisy quantum channels 561
12.4.1 Entropy exchange and the quantum Fano inequality 561
12.4.2 The quantum data processing inequality 564
12.4.3 Quantum Singleton bound 568
12.4.4 Quantum error-correction, refrigeration and Maxwell’s demon 569
12.5 Entanglement as a physical resource 571
12.5.1 Transforming bi-partite pure state entanglement 573
12.5.2 Entanglement distillation and dilution 578
12.5.3 Entanglement distillation and quantum error-correction 580
12.6 Quantum cryptography 582
12.6.1 Private key cryptography 582
12.6.2 Privacy amplification and information reconciliation 584
12.6.3 Quantum key distribution 586
12.6.4 Privacy and coherent information 592
12.6.5 The security of quantum key distribution 593
Appendices 608
Appendix 1: Notes on basic probability theory 608
Appendix 2: Group theory 610
A2.1 Basic definitions 610
A2.1.1 Generators 611
A2.1.2 Cyclic groups 611
A2.1.3 Cosets 612
Contents xv
A2.2 Representations 612
A2.2.1 Equivalence and reducibility 612
A2.2.2 Orthogonality 613
A2.2.3 The regular representation 614
A2.3 Fourier transforms 615
Appendix 3: The Solovay--Kitaev theorem 617
Appendix 4: Number theory 625
A4.1 Fundamentals 625
A4.2 Modular arithmetic and Euclid’s algorithm 626
A4.3 Reduction of factoring to order-finding 633
A4.4 Continued fractions 635
Appendix 5: Public key cryptography and the RSA cryptosystem 640
Appendix 6: Proof of Lieb’s theorem 645
Bibliography 649
Index 665

标签: 信息 计算

实例下载地址

量子计算与量子信息.pdf

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警