实例介绍
【实例截图】
【核心代码】
Contents Preface ix I Introductory Material 1 1 Introduction 3 1.1 Planning to Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Motivational Examples and Applications . . . . . . . . . . . . . . . 5 1.3 Basic Ingredients of Planning . . . . . . . . . . . . . . . . . . . . . 17 1.4 Algorithms, Planners, and Plans . . . . . . . . . . . . . . . . . . . . 19 1.5 Organization of the Book . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Discrete Planning 27 2.1 Introduction to Discrete Feasible Planning . . . . . . . . . . . . . . 28 2.2 Searching for Feasible Plans . . . . . . . . . . . . . . . . . . . . . . 32 2.3 Discrete Optimal Planning . . . . . . . . . . . . . . . . . . . . . . . 43 2.4 Using Logic to Formulate Discrete Planning . . . . . . . . . . . . . 57 2.5 Logic-Based Planning Methods . . . . . . . . . . . . . . . . . . . . 63 II Motion Planning 77 3 Geometric Representations and Transformations 81 3.1 Geometric Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 Rigid-Body Transformations . . . . . . . . . . . . . . . . . . . . . . 92 3.3 Transforming Kinematic Chains of Bodies . . . . . . . . . . . . . . 100 3.4 Transforming Kinematic Trees . . . . . . . . . . . . . . . . . . . . . 112 3.5 Nonrigid Transformations . . . . . . . . . . . . . . . . . . . . . . . 120 4 The Configuration Space 127 4.1 Basic Topological Concepts . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Defining the Configuration Space . . . . . . . . . . . . . . . . . . . 145 4.3 Configuration Space Obstacles . . . . . . . . . . . . . . . . . . . . . 155 4.4 Closed Kinematic Chains . . . . . . . . . . . . . . . . . . . . . . . . 167 v vi CONTENTS 5 Sampling-Based Motion Planning 185 5.1 Distance and Volume in C-Space . . . . . . . . . . . . . . . . . . . 186 5.2 Sampling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 5.3 Collision Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 5.4 Incremental Sampling and Searching . . . . . . . . . . . . . . . . . 217 5.5 Rapidly Exploring Dense Trees . . . . . . . . . . . . . . . . . . . . 228 5.6 Roadmap Methods for Multiple Queries . . . . . . . . . . . . . . . . 237 6 Combinatorial Motion Planning 249 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 6.2 Polygonal Obstacle Regions . . . . . . . . . . . . . . . . . . . . . . 251 6.3 Cell Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 264 6.4 Computational Algebraic Geometry . . . . . . . . . . . . . . . . . . 280 6.5 Complexity of Motion Planning . . . . . . . . . . . . . . . . . . . . 298 7 Extensions of Basic Motion Planning 311 7.1 Time-Varying Problems . . . . . . . . . . . . . . . . . . . . . . . . 311 7.2 Multiple Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318 7.3 Mixing Discrete and Continuous Spaces . . . . . . . . . . . . . . . . 327 7.4 Planning for Closed Kinematic Chains . . . . . . . . . . . . . . . . 337 7.5 Folding Problems in Robotics and Biology . . . . . . . . . . . . . . 347 7.6 Coverage Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 354 7.7 Optimal Motion Planning . . . . . . . . . . . . . . . . . . . . . . . 357 8 Feedback Motion Planning 369 8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369 8.2 Discrete State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 371 8.3 Vector Fields and Integral Curves . . . . . . . . . . . . . . . . . . . 381 8.4 Complete Methods for Continuous Spaces . . . . . . . . . . . . . . 398 8.5 Sampling-Based Methods for Continuous Spaces . . . . . . . . . . . 412 III Decision-Theoretic Planning 433 9 Basic Decision Theory 437 9.1 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 438 9.2 A Game Against Nature . . . . . . . . . . . . . . . . . . . . . . . . 446 9.3 Two-Player Zero-Sum Games . . . . . . . . . . . . . . . . . . . . . 459 9.4 Nonzero-Sum Games . . . . . . . . . . . . . . . . . . . . . . . . . . 468 9.5 Decision Theory Under Scrutiny . . . . . . . . . . . . . . . . . . . . 477 10 Sequential Decision Theory 495 10.1 Introducing Sequential Games Against Nature . . . . . . . . . . . . 496 10.2 Algorithms for Computing Feedback Plans . . . . . . . . . . . . . . 508 CONTENTS vii 10.3 Infinite-Horizon Problems . . . . . . . . . . . . . . . . . . . . . . . 522 10.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 527 10.5 Sequential Game Theory . . . . . . . . . . . . . . . . . . . . . . . . 536 10.6 Continuous State Spaces . . . . . . . . . . . . . . . . . . . . . . . . 551 11 Sensors and Information Spaces 559 11.1 Discrete State Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 561 11.2 Derived Information Spaces . . . . . . . . . . . . . . . . . . . . . . 571 11.3 Examples for Discrete State Spaces . . . . . . . . . . . . . . . . . . 581 11.4 Continuous State Spaces . . . . . . . . . . . . . . . . . . . . . . . . 589 11.5 Examples for Continuous State Spaces . . . . . . . . . . . . . . . . 598 11.6 Computing Probabilistic Information States . . . . . . . . . . . . . 614 11.7 Information Spaces in Game Theory . . . . . . . . . . . . . . . . . 619 12 Planning Under Sensing Uncertainty 633 12.1 General Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634 12.2 Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 12.3 Environment Uncertainty and Mapping . . . . . . . . . . . . . . . . 655 12.4 Visibility-Based Pursuit-Evasion . . . . . . . . . . . . . . . . . . . . 684 12.5 Manipulation Planning with Sensing Uncertainty . . . . . . . . . . 691 IV Planning Under Differential Constraints 711 13 Differential Models 715 13.1 Velocity Constraints on the Configuration Space . . . . . . . . . . . 716 13.2 Phase Space Representation of Dynamical Systems . . . . . . . . . 735 13.3 Basic Newton-Euler Mechanics . . . . . . . . . . . . . . . . . . . . . 745 13.4 Advanced Mechanics Concepts . . . . . . . . . . . . . . . . . . . . . 762 13.5 Multiple Decision Makers . . . . . . . . . . . . . . . . . . . . . . . . 780 14 Sampling-Based Planning Under Differential Constraints 787 14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 788 14.2 Reachability and Completeness . . . . . . . . . . . . . . . . . . . . 798 14.3 Sampling-Based Motion Planning Revisited . . . . . . . . . . . . . 810 14.4 Incremental Sampling and Searching Methods . . . . . . . . . . . . 820 14.5 Feedback Planning Under Differential Constraints . . . . . . . . . . 837 14.6 Decoupled Planning Approaches . . . . . . . . . . . . . . . . . . . . 841 14.7 Gradient-Based Trajectory Optimization . . . . . . . . . . . . . . . 855 15 System Theory and Analytical Techniques 861 15.1 Basic System Properties . . . . . . . . . . . . . . . . . . . . . . . . 862 15.2 Continuous-Time Dynamic Programming . . . . . . . . . . . . . . . 870 15.3 Optimal Paths for Some Wheeled Vehicles . . . . . . . . . . . . . . 880 viii CONTENTS 15.4 Nonholonomic System Theory . . . . . . . . . . . . . . . . . . . . . 888 15.5 Steering Methods for Nonholonomic Systems . . . . . . . . . . . . . 910
标签: Algorithms IT go en ib
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论