实例介绍
【实例简介】Santander Product Recommendationd方案1
【实例截图】
【核心代码】import pandas as pd
import numpy as np
import itertools
target_cols = ['ind_cco_fin_ult1', 'ind_cder_fin_ult1',
'ind_cno_fin_ult1', 'ind_ctju_fin_ult1', 'ind_ctma_fin_ult1', 'ind_ctop_fin_ult1',
'ind_ctpp_fin_ult1', 'ind_deco_fin_ult1', 'ind_deme_fin_ult1', 'ind_dela_fin_ult1',
'ind_ecue_fin_ult1', 'ind_fond_fin_ult1', 'ind_hip_fin_ult1', 'ind_plan_fin_ult1',
'ind_pres_fin_ult1', 'ind_reca_fin_ult1', 'ind_tjcr_fin_ult1', 'ind_valo_fin_ult1',
'ind_viv_fin_ult1', 'ind_nomina_ult1', 'ind_nom_pens_ult1', 'ind_recibo_ult1']
def add_com_feats(lag_feats):
com_feats = [target_cols[i] for i in [0, 2, 15, 16, 19, 20, 21]]
for x, com_cols in enumerate(itertools.combinations(com_feats, 4)):
for i in range(1, 6):
com_col = [str(i) '_' col for col in com_cols]
lag_feats[str(x) '_com4_' str(i)] = lag_feats[com_col].sum(axis=1)
return lag_feats.iloc[:, -175:]
if __name__ == "__main__":
data_path = '../input/feats/'
train_lag5 = pd.read_csv(data_path 'train_feats_lag5.csv')
train_add5 = add_com_feats(train_lag5)
train_add5.to_csv(data_path 'train_feats_come175.csv', index=False)
test_lag5 = pd.read_csv(data_path 'test_feats_lag5.csv')
test_add5 = add_com_feats(test_lag5)
test_add5.to_csv(data_path 'test_feats_come175.csv', index=False)
【实例截图】

【核心代码】import pandas as pd
import numpy as np
import itertools
target_cols = ['ind_cco_fin_ult1', 'ind_cder_fin_ult1',
'ind_cno_fin_ult1', 'ind_ctju_fin_ult1', 'ind_ctma_fin_ult1', 'ind_ctop_fin_ult1',
'ind_ctpp_fin_ult1', 'ind_deco_fin_ult1', 'ind_deme_fin_ult1', 'ind_dela_fin_ult1',
'ind_ecue_fin_ult1', 'ind_fond_fin_ult1', 'ind_hip_fin_ult1', 'ind_plan_fin_ult1',
'ind_pres_fin_ult1', 'ind_reca_fin_ult1', 'ind_tjcr_fin_ult1', 'ind_valo_fin_ult1',
'ind_viv_fin_ult1', 'ind_nomina_ult1', 'ind_nom_pens_ult1', 'ind_recibo_ult1']
def add_com_feats(lag_feats):
com_feats = [target_cols[i] for i in [0, 2, 15, 16, 19, 20, 21]]
for x, com_cols in enumerate(itertools.combinations(com_feats, 4)):
for i in range(1, 6):
com_col = [str(i) '_' col for col in com_cols]
lag_feats[str(x) '_com4_' str(i)] = lag_feats[com_col].sum(axis=1)
return lag_feats.iloc[:, -175:]
if __name__ == "__main__":
data_path = '../input/feats/'
train_lag5 = pd.read_csv(data_path 'train_feats_lag5.csv')
train_add5 = add_com_feats(train_lag5)
train_add5.to_csv(data_path 'train_feats_come175.csv', index=False)
test_lag5 = pd.read_csv(data_path 'test_feats_lag5.csv')
test_add5 = add_com_feats(test_lag5)
test_add5.to_csv(data_path 'test_feats_come175.csv', index=False)
好例子网口号:伸出你的我的手 — 分享!
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论