在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → matlab数字图像GUI

matlab数字图像GUI

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:0.06M
  • 下载次数:19
  • 浏览次数:202
  • 发布时间:2019-11-03
  • 实例类别:一般编程问题
  • 发 布 人:robot666
  • 文件格式:.rar
  • 所需积分:2
 相关标签:

实例介绍

【实例简介】

【实例截图】

from clipboard

【核心代码】

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
function varargout = image_processing(varargin)
% IMAGE_PROCESSING MATLAB code for image_processing.fig
%      IMAGE_PROCESSING, by itself, creates a new IMAGE_PROCESSING or raises the existing
%      singleton*.
%
%      H = IMAGE_PROCESSING returns the handle to a new IMAGE_PROCESSING or the handle to
%      the existing singleton*.
%
%      IMAGE_PROCESSING('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in IMAGE_PROCESSING.M with the given input arguments.
%
%      IMAGE_PROCESSING('Property','Value',...) creates a new IMAGE_PROCESSING or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before image_processing_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to image_processing_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
 
% Edit the above text to modify the response to help image_processing
 
% Last Modified by GUIDE v2.5 22-Apr-2017 15:16:04
 
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @image_processing_OpeningFcn, ...
                   'gui_OutputFcn',  @image_processing_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end
 
if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
 
 
% --- Executes just before image_processing is made visible.
function image_processing_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to image_processing (see VARARGIN)
 
% Choose default command line output for image_processing
handles.output = hObject;
 
% Update handles structure
guidata(hObject, handles);
 
% UIWAIT makes image_processing wait for user response (see UIRESUME)
% uiwait(handles.figure1);
 
 
% --- Outputs from this function are returned to the command line.
function varargout = image_processing_OutputFcn(hObject, eventdata, handles)
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
% Get default command line output from handles structure
axis off;
varargout{1} = handles.output;
 
 
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
    global M;
    ima_gray=image_gray(M);
    imshow(ima_gray);
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
    global M;
    ima_gray=image_gray(M);
    [i,j]=size(ima_gray);
    prompt = {'请输入阈值:'};
    dlg_title = '提示';
    num_lines = 1;
    def = {'5'};
    value_i = inputdlg(prompt,dlg_title,num_lines);
    threshold_value=str2double(value_i);
    for a=1:i
        for b=1:j
            if ima_gray(a,b)<threshold_value
                ima_gray(a,b)=0;
            else
                ima_gray(a,b)=1;
            end
        end
    end
    ima_gray=mat2gray(ima_gray);
    imshow(ima_gray);
     
         
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
    global M;
    ima_red=M(:,:,1);
    ima_green=M(:,:,2);
    ima_blue=M(:,:,3);
    img_red=mid_filter(ima_red,6);
    img_green=mid_filter(ima_green,6);
    img_blue=mid_filter(ima_blue,6);
    image(:,:,1)=img_red;
    image(:,:,2)=img_green;
    image(:,:,3)=img_blue;
    imshow(image);
     
     
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
    global M;
    if size(M,1)<2;
        msgbox('请先打开图片');
    end
    ima_red=M(:,:,1);
    ima_green=M(:,:,2);
    ima_blue=M(:,:,3);
    processing_red=low_pass_filter(ima_red);
    processing_green=low_pass_filter(ima_green);
    processing_blue=low_pass_filter(ima_blue);
    image(:,:,1)=processing_red;
    image(:,:,2)=processing_green;
    image(:,:,3)=processing_blue;
    imshow(image);
         
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton5.
function pushbutton5_Callback(hObject, eventdata, handles)
    global M;
    prompt = {'请输入滤波核大小:'};
    dlg_title = '提示';
    num_lines = 1;
    def = {'5'};
    value_i = inputdlg(prompt,dlg_title,num_lines);
    N=str2double(value_i);
    d=avg_filter(M,N);   
    imshow(d);
     
     
% hObject    handle to pushbutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
    global M;
    %滤波核大小
    ima_red=M(:,:,1);
    ima_green=M(:,:,2);
    ima_blue=M(:,:,3);
    prompt = {'请输入滤波器大小:'};
    dlg_title = '提示';
    num_lines = 1;
    value_i = inputdlg(prompt,dlg_title,num_lines);
    N=str2double(value_i);
    sigma=1.7;
    img_red=image_gaussian(ima_red,sigma,N);
    img_green=image_gaussian(ima_green,sigma,N);
    img_blue=image_gaussian(ima_blue,sigma,N);
    img(:,:,1)=img_red;
    img(:,:,2)=img_green;
    img(:,:,3)=img_blue;
    imshow(img);
     
% hObject    handle to pushbutton6 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
    global M;
    ima_red=M(:,:,1);
    ima_green=M(:,:,2);
    ima_blue=M(:,:,3);
    histogram_red=histogram(ima_red);
    histogram_green=histogram(ima_green);
    histogram_blue=histogram(ima_blue);
    figure,
    subplot(1,3,1);plot(histogram_red),title('红色通道');
    xlim([0 255])
    subplot(1,3,2),plot(histogram_green),title('绿色通道');
    xlim([0 255])
    subplot(1,3,3),plot(histogram_blue),title('蓝色通道');
    xlim([0 255])
%     ima=imread('1.jpg');
%     ima_gaussian=image_gaussian(ima,2,500);
% hObject    handle to pushbutton7 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton8.
function pushbutton8_Callback(hObject, eventdata, handles)%每个通道不一样,不能按照一个通道来
    global M;
    ima_gray=image_gray(M);
    [i,j]=size(ima_gray);
    threshold_value=150;
    for a=1:i
        for b=1:j
            if ima_gray(a,b)<threshold_value
                ima_gray(a,b)=0;
            else
                ima_gray(a,b)=1;
            end
        end
    end
    ima_gray=mat2gray(ima_gray);
    IMG=ima_gray;
    [row,col]=size(IMG);
    figure,imshow(IMG);title('二值化');
    for i=1:row-1
         for j=1:col-1
             if(IMG(i,j 1)&&IMG(i 1,j))     %若S中为1的位置全为1则为1
                IMG(i,j)=1;    %正向判断1
             else
                IMG(i,j)=0; 
             end
         end
     end
     figure,imshow(IMG);title('腐蚀');
     
 
     
%     figure,
%     subplot(1,3,1);plot(histogram_red),title('红色通道');
%     xlim([0 255])
%     subplot(1,3,2),plot(histogram_green),title('绿色通道');
%     xlim([0 255])
%     subplot(1,3,3),plot(histogram_blue),title('蓝色通道');
%     xlim([0 255])
     
     
% hObject    handle to pushbutton8 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton9.
function pushbutton9_Callback(hObject, eventdata, handles)
    global M;
    [m,n,q]=size(M); 
    img=double(M);
    %%canny边缘检测的前两步相对不复杂,所以我就直接调用系统函数了
    %%高斯滤波
    w=fspecial('gaussian',[5 5]);
    img=imfilter(img,w,'replicate');
 
%%sobel边缘检测
w=fspecial('sobel');
img_w=imfilter(img,w,'replicate');      %求横边缘
w=w';
img_h=imfilter(img,w,'replicate');      %求竖边缘
img=sqrt(img_w.^2 img_h.^2);        %注意这里不是简单的求平均,而是平方和在开方。我曾经好长一段时间都搞错了
 
%%下面是非极大抑制
new_edge=zeros(m,n);
for i=2:m-1
    for j=2:n-1
        Mx=img_w(i,j);
        My=img_h(i,j);
         
        if My~=0
            o=atan(Mx/My);      %边缘的法线弧度
        elseif My==0 && Mx>0
            o=pi/2;
        else
            o=-pi/2;           
        end
         
        %Mx处用My和img进行插值
        adds=get_coords(o);      %边缘像素法线一侧求得的两点坐标,插值需要      
        M1=My*img(i adds(2),j adds(1)) (Mx-My)*img(i adds(4),j adds(3));   %插值后得到的像素,用此像素和当前像素比较
        adds=get_coords(o pi);%边缘法线另一侧求得的两点坐标,插值需要
        M2=My*img(i adds(2),j adds(1)) (Mx-My)*img(i adds(4),j adds(3));   %另一侧插值得到的像素,同样和当前像素比较
         
        isbigger=(Mx*img(i,j)>M1)*(Mx*img(i,j)>=M2) (Mx*img(i,j)<M1)*(Mx*img(i,j)<=M2); %如果当前点比两边点都大置1
         
        if isbigger
           new_edge(i,j)=img(i,j);
        end       
    end
end
 
 
%%下面是滞后阈值处理
up=120;     %上阈值
low=100;    %下阈值
set(0,'RecursionLimit',10000);  %设置最大递归深度
for i=1:m
    for j=1:n
      if new_edge(i,j)>up &&new_edge(i,j)~=255  %判断上阈值
            new_edge(i,j)=255;
            new_edge=connect(new_edge,i,j,low);
      end
    end
end
imshow(new_edge==255);
 
 
 
% hObject    handle to pushbutton9 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton10.
function pushbutton10_Callback(hObject, eventdata, handles)
    global M;
    u=image_gray(M);
    F=double(M);
    U=double(u);
    [H,W]=size(u);
    uSobel=u;
    % ms=0;
    % ns=0;
    for i=2:H-1    
        for j=2:W-1     
            Gx=(U(i 1,j-1) 2*U(i 1,j) F(i 1,j 1))-(U(i-1,j-1) 2*U(i-1,j) F(i-1,j 1));
            Gy=(U(i-1,j 1) 2*U(i,j 1) F(i 1,j 1))-(U(i-1,j-1) 2*U(i,j-1) F(i 1,j-1));   
            uSobel(i,j)=sqrt(Gx^2 Gy^2);
            %    ms=ms uSobel(i,j);
            %   ns=ns (uSobel(i,j)-ms)^2;    
        end
    end
    %     ms=ms/(H*W);
    %     ns=ns/(H*W);
    imshow(M); 
    figure;
    imshow(im2uint8(uSobel));title('Sobel处理后');
    for i=1:H
        for j=1:W
            if(uSobel(i,j)<150)
                uSobel(i,j)=0;
            else
                uSobel(i,j)=1;
            end
        end
    end
    uSobel=mat2gray(uSobel);
    figure;imshow(uSobel);title('阈值细化');
 
     
     
% hObject    handle to pushbutton10 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton12.
function pushbutton12_Callback(hObject, eventdata, handles)
    [filename, pathname] = uigetfile('*.jpg', '读取图片文件'); %选择图片文件
    if isequal(filename,0)   %判断是否选择
       msgbox('没有选择任何图片');
    else
       pathfile=fullfile(pathname, filename);  %获得图片路径
       global  M;
       M=imread(pathfile);     %将图片读入矩阵
       imshow(M);
    end
% hObject    handle to pushbutton12 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
% --- Executes on button press in pushbutton13.
function pushbutton13_Callback(hObject, eventdata, handles)
       button13=questdlg('你确定退出吗?','退出程序','Yes','No','Yes');
       if strcmp(button13,'Yes')
       close all;
       end;
 
     
     
% hObject    handle to pushbutton13 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
 
function d=image_gray(src)
    ima_red=src(:,:,1);
    ima_green=src(:,:,2);
    ima_blue=src(:,:,3);
    d=0.299*ima_red 0.587*ima_green 0.114*ima_blue;
 
     
     
     
function desimg=image_gaussian(originimg,sigma,N) 
    [ori_row,ori_col]=size(originimg);
    N_row = 2*N 1; 
     
    H = [];%求高斯模板H 
    for i=1:N_row 
        for j=1:N_row 
            fenzi=double((i-N-1)^2 (j-N-1)^2); 
            H(i,j)=exp(-fenzi/(2*sigma*sigma))/(2*pi*sigma); 
        end 
    end 
    H=H/sum(H(:));%归一化 
     
    temp=[];             %模板与图像卷积实现
    desimg=[ori_row,ori_col];
    for ai=N 1:ori_row-N-1 
        for aj=N 1:ori_col-N-1 
            temp=0; 
            for bi=1:N_row 
                for bj=1:N_row 
                    temp= temp (originimg(ai bi-N,aj bj-N)*H(bi,bj)); 
                end 
            end 
            desimg(ai,aj)=temp; 
        end 
    end 
    desimg=uint8(desimg); 
 
 
function re=get_coords(angle)       %angle是边缘法线角度,返回法线前后两点
    sigma=0.000000001;
    x1=ceil(cos(angle pi/8)*sqrt(2)-0.5-sigma);
    y1=ceil(-sin(angle-pi/8)*sqrt(2)-0.5-sigma);
    x2=ceil(cos(angle-pi/8)*sqrt(2)-0.5-sigma);
    y2=ceil(-sin(angle-pi/8)*sqrt(2)-0.5-sigma);
    re=[x1 y1 x2 y2];
 
 
 
function nedge=connect(nedge,y,x,low)       %种子定位后的连通分析
    neighbour=[-1 -1;-1 0;-1 1;0 -1;0 1;1 -1;1 0;1 1];  %八连通搜寻
    [m n]=size(nedge);
    for k=1:8
        yy=y neighbour(k,1);
        xx=x neighbour(k,2);
        if yy>=1 &&yy<=m &&xx>=1 && xx<=n 
            if nedge(yy,xx)>=low && nedge(yy,xx)~=255   %判断下阈值
                nedge(yy,xx)=255;
                nedge=connect(nedge,yy,xx,low);
            end
        end       
    end
     
    function d=mid_filter(ima,N)    
    [height, width]=size(ima);   %输入图像是p×q的,且p>n,q>n 
    x1=double(ima); 
    x2=x1;
    for i=1:height-N 1 
        for j=1:height-N 1 
            c=x1(i:i (N-1),j:j (N-1)); %取出x1中从(i,j)开始的n行n列元素,即模板(n×n的) 
            e=c(1,:);      %是c矩阵的第一行 
            for u=2:N 
                e=[e,c(u,:)];     %将c矩阵变为一个行矩阵     
            end 
            mm=median(e);      %mm是中值 
            x2(i round((N-1)/2),j round((N-1)/2))=mm;   %将模板各元素的中值赋给模板中心位置的元素 
        end 
    end  
    d=uint8(x2);     %未被赋值的元素取原值 
     
    function d=avg_filter(image,n)    
    a(1:n,1:n)=1;   %a即n×n模板,元素全是1 
    [height, width]=size(image);   %输入图像是hightxwidth的,且hight>n,width>n 
    x1=double(image); 
    x2=x1; 
    for i=1:height-n 1 
        for j=1:width-n 1 
            c=x1(i:i (n-1),j:j (n-1)).*a; %取出x1中从(i,j)开始的n行n列元素与模板相乘 
            s=sum(sum(c));                 %求c矩阵中各元素之和 
            x2(i (n-1)/2,j (n-1)/2)=s/(n*n); %将与模板运算后的各元素的均值赋给模板中心位置的元素 
        end 
    end 
    %未被赋值的元素取原值 
    d=uint8(x2);
 
function B=low_pass_filter(image)
    m=double(image);
    f=fft2(m);
    f=fftshift(f); 
    [N1,N2]=size(f);  %返回矩阵的行和列
    n1=round(N1/2);
    n2=round(N2/2); 
    n=2;d0=50; %滤波器截止频率,滤波半径
    for i=1:N1   
        for j=1:N2        
            d=sqrt((i-n1)^2 (j-n2)^2);        %计算低通滤波转换函数       
            if d<=d0             
                h=1;       
            else
                h=0;
            end
            y(i,j)=h*f(i,j);   
        end
    end
    y=ifftshift(y);
    A=ifft2(y);
    B=uint8(real(A)); 
 
function nk=histogram(image)
    L=256; %灰度级
    nk=zeros(L,1);%出现次数
    [row,col]=size(image);
    n=row*col; %总像素个数
    for i = 1:row
    for j = 1:col
    num = double(image(i,j)) 1; %获取像素点灰度级0到255所以要加上1
    nk(num) = nk(num) 1; %统计nk
    end
    end
 
 
 
   
  

标签:

实例下载地址

matlab数字图像GUI

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警