在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → ACL 2017 文本挖掘领域 论文集.zip

ACL 2017 文本挖掘领域 论文集.zip

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:53.94M
  • 下载次数:2
  • 浏览次数:83
  • 发布时间:2021-12-06
  • 实例类别:一般编程问题
  • 发 布 人:js2021
  • 文件格式:.zip
  • 所需积分:2
 

实例介绍

【实例简介】
ACL会议(Annual Meeting of the Association for Computational Linguistics)是自然语言处理与计算语言学领域最高级别的学术会议,由计算语言学协会主办,每年一届。 涉及 对话(Dialogue) 篇章(Discourse) 评测( Eval) 信息抽取( IE) 信息检索( IR) 语言生成(LanguageGen) 语言资源(LanguageRes) 机器翻译(MT) 多模态(Multimodal) 音韵学/ 形态学( Phon/ Morph) 自动问答(QA) 语义(Semantics) 情感(Sentiment) 语音(Speech) 统计机器学习(Stat ML) 文摘(Summarisation) 句法(Syntax) 等多个方面
【实例截图】
【核心代码】
4744302543287945329.zip
└── ACL2017
├── Dialog Interactive Systems
│   ├── A Conditional Variational Framework for Dialog Generation.pdf
│   ├── Adversarial Adaptation of Synthetic or Stale Data.pdf
│   ├── Affect-LM A Neural Language Model for Customizable Affective Text.pdf
│   ├── AliMe Chat A Sequence to Sequence and Rerank based Chatbot Engine.pdf
│   ├── An Empirical Study on Context-Aware Neural Conversational Models.pdf
│   ├── Chat Detection in an Intelligent Assistant Combining Task-oriented and Non-task-oriented Spoken Dialogue Systems.pdf
│   ├── Hybrid Code Networks practical and efficient end-to-end dialog control with supervised and reinforcement learning.pdf
│   ├── Joint Modeling of Content and Discourse Relations in Dialogues.pdf
│   ├── Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoencoders.pdf
│   ├── Learning Symmetric Collaborative Dialogue Agents with Dynamic Knowledge Graph Embeddings.pdf
│   ├── Neural Belief Tracker Data Driven Dialogue State Tracking.pdf
│   ├── Sequential Matching Network A New Architecture for Multi turn Response Selection in Retrieval based Chatbots.pdf
│   ├── Towards an Automatic Turing Test Learning to Evaluate Dialogue Responses.pdf
│   └── Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access.pdf
├── IE QA Text Mining Applications
│   ├── A Constituent-Centric Neural Architecture for Reading Comprehension.pdf
│   ├── Adversarial Multi-task Learning for Text Classification.pdf
│   ├── A FOFE-based Local Detection Approach for Named Entity Recognition and Mention Detection.pdf
│   ├── A Generative Attentional Neural Network Model for Dialogue Act Classification.pdf
│   ├── An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining.pdf
│   ├── Answering Complex Questions Using Open Information Extraction.pdf
│   ├── Attention-over-Attention Neural Networks for Reading Comprehension.pdf
│   ├── Automatically Labeled Data Generation for Large Scale Event Extraction.pdf
│   ├── Bootstrapping for Numerical Open IE.pdf
│   ├── Cardinal Virtues Extracting Relation Cardinalities from Text.pdf
│   ├── Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Path.pdf
│   ├── Coarse-to-Fine Question Answering for Long Documents.pdf
│   ├── Comparing Apples to Apples Learning Semantics of Common Entities Through a Novel Comprehension.pdf
│   ├── Cross-lingual Distillation for Text Classification.pdf
│   ├── Deep Keyphrase Generation.pdf
│   ├── Deep Pyramid Convolutional Neural Networks for Text Categorization.pdf
│   ├── Determining Gains Acquired from Word Embedding Quantitatively using Discrete Distribution.pdf
│   ├── English Event Detection With Translated Language Features.pdf
│   ├── EviNets Evidence Neural Networks for Combining Evidence Signals for Factoid Question Answering.pdf
│   ├── Exploiting Argument Information to Improve Event Detection via Supervised Attention Mechanisms.pdf
│   ├── Fine-Grained Entity Typing with High-Multiplicity Assignments.pdf
│   ├── Gated-Attention Readers for Text Comprehension.pdf
│   ├── Generating Natural Answer by Incorporating Copying and Retrieving Mechanisms in Sequence-to-Sequence Learning.pdf
│   ├── Going out on a limb Joint Extraction of Entity Mentions and Relations without Dependency Trees.pdf
│   ├── Group Sparse CNNs for Question Classification with Answer Sets.pdf
│   ├── Improved Neural Relation Detection for Knowledge Base Question Answering.pdf
│   ├── Improving Native Language Identification by Using Spelling Errors.pdf
│   ├── Integrating Deep Linguistic Features in Factuality Prediction over Unified Datasets.pdf
│   ├── Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme.pdf
│   ├── Joint Extraction of Relations with Class Ties via Effective Deep Ranking.pdf
│   ├── Learning with Noise Enhance Distantly Supervised Relation Extraction with Dynamic Transition Matrix.pdf
│   ├── Leveraging Knowledge Bases in LSTMs for Improving Machine Reading.pdf
│   ├── List-only Entity Linking.pdf
│   ├── Multi-Task Learning of Keyphrase Boundary Classification.pdf
│   ├── Neural End-to-End Learning for Computational Argumentation Mining.pdf
│   ├── Neural Relation Extraction with Multi-lingual Attention.pdf
│   ├── Neural Symbolic Machines Learning Semantic Parsers on Freebase with Weak Supervision.pdf
│   ├── Pocket Knowledge Base Population.pdf
│   ├── Prerequisite Relation Learning for Concepts in MOOCs.pdf
│   ├── Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks.pdf
│   ├── Question Answering through Transfer Learning from Large Fine-grained Supervision Data.pdf
│   ├── Reading Wikipedia to Answer Open-Domain Questions.pdf
│   ├── Salience Rank Efficient Keyphrase Extraction with Topic Modeling.pdf
│   ├── Search-based Neural Structured Learning for Sequential Question Answering.pdf
│   ├── Self-Crowdsourcing Training for Relation Extraction.pdf
│   ├── Tandem Anchoring a Multiword Anchor Approach for Interactive Topic Modeling.pdf
│   ├── Time Expression Analysis and Recognition Using Syntactic Token Types and General Heuristic Rules.pdf
│   ├── Topical Coherence in LDA-based Models through Induced Segmentation.pdf
│   ├── Towards a Seamless Integration of Word Senses into Downstream NLP Applications.pdf
│   ├── Transductive Non-linear Learning for Chinese Hypernym Prediction.pdf
│   ├── Understanding and Predicting Empathic Behavior in Counseling Therapy.pdf
│   ├── Unsupervised Text Segmentation Based on Native Language Characteristics.pdf
│   ├── Vancouver Welcomes You! Minimalist Location Metonymy Resolution.pdf
│   └── Weakly Supervised Cross-Lingual Named Entity Recognition via Effective Annotation and Representation Projection.pdf
├── Machine Learning
│   ├── A Deep Network with Visual Text Composition Behavior.pdf
│   ├── Differentiable Scheduled Sampling for Credit Assignment.pdf
│   ├── Disfluency Detection using a Noisy Channel Model and a Deep Neural Language Model.pdf
│   ├── From Language to Programs Bridging Reinforcement Learning and Maximum Marginal Likelihood.pdf
│   ├── Implicitly-Defined Neural Networks for Sequence Labeling.pdf
│   ├── Information-Theory Interpretation of the Skip-Gram Negative-Sampling Objective Function.pdf
│   ├── Learning to Create and Reuse Words in Open-Vocabulary Neural Language Modeling.pdf
│   ├── Learning to Skim Text.pdf
│   ├── Multi-space Variational Encoder-Decoders for Semi-supervised Labeled Sequence Transduction.pdf
│   ├── On the Equivalence of Holographic and Complex Embeddings for Knowledge Graph Completion.pdf
│   ├── Probabilistic Typology Deep Generative Models of Vowel Inventories.pdf
│   ├── Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling.pdf
│   ├── Semi-Supervised QA with Generative Domain-Adaptive Nets.pdf
│   └── Topically Driven Neural Language Model.pdf
└── Sentiment Analysis Opinion Mining
├── Other Topics You May Also Agree or Disagree Modeling Inter-Topic Preferences using Tweets and Matrix Factorization.pdf
└── Volatility Prediction using Financial Disclosures Sentiments with Word Embedding-based IR Models.pdf

5 directories, 84 files

标签:

实例下载地址

ACL 2017 文本挖掘领域 论文集.zip

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警