实例介绍
本文对语音识别的主要过程进行了详细的介绍。在语音的特征参数提取阶 段,本文着重介绍了实际应用中经常使用的线性预测倒谱系数(LPCC)和美尔 频率倒谱系数(MFCC)等。本文主要研究了基于BP神经网络的语音识别,并 提出了基于MFCC与LPCC混合参数的语音识别方法,以更好地表现语音的特 征,避免传统的分段线性处理所产生的局限性,提高了识别性能。实验结果显示, 该方法比传统的MFCC参数的语音识别方法具有更好的识别性能。本文还对识 别系统中的BP神经网络进行了优化,改进了性能,缩短了训练时间,为将来移 植到嵌入式系统中打下了良好的基础。
【实例截图】
【核心代码】
标签:
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论