实例介绍
【实例简介】
【实例截图】
【实例截图】
【核心代码】
from gae.layers import GraphConvolution, GraphConvolutionSparse, InnerProductDecoder
#import tensorflow as tf
import tensorflow.compat.v1 as tf
flags =tf.compat.v1.flags
#flags = tf.app.flags
FLAGS = flags.FLAGS
class Model(object):
def __init__(self, **kwargs):
allowed_kwargs = {'name', 'logging'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' kwarg
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' kwarg
name = kwargs.get('name')
if not name:
name = self.__class__.__name__.lower()
self.name = name
logging = kwargs.get('logging', False)
self.logging = logging
self.vars = {}
def _build(self):
raise NotImplementedError
def build(self):
""" Wrapper for _build() """
with tf.variable_scope(self.name):
self._build()
variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name)
self.vars = {var.name: var for var in variables}
def fit(self):
pass
def predict(self):
pass
class GCNModelAE(Model):
def __init__(self, placeholders, num_features, features_nonzero, **kwargs):
super(GCNModelAE, self).__init__(**kwargs)
self.inputs = placeholders['features']
self.input_dim = num_features
self.features_nonzero = features_nonzero
self.adj = placeholders['adj']
self.dropout = placeholders['dropout']
self.build()
def _build(self):
self.hidden1 = GraphConvolutionSparse(input_dim=self.input_dim,
output_dim=FLAGS.hidden1,
adj=self.adj,
features_nonzero=self.features_nonzero,
act=tf.nn.relu,
dropout=self.dropout,
logging=self.logging)(self.inputs)
self.embeddings = GraphConvolution(input_dim=FLAGS.hidden1,
output_dim=FLAGS.hidden2,
adj=self.adj,
act=lambda x: x,
dropout=self.dropout,
logging=self.logging)(self.hidden1)
self.z_mean = self.embeddings
self.reconstructions = InnerProductDecoder(input_dim=FLAGS.hidden2,
act=lambda x: x,
logging=self.logging)(self.embeddings)
class GCNModelVAE(Model):
def __init__(self, placeholders, num_features, num_nodes, features_nonzero, **kwargs):
super(GCNModelVAE, self).__init__(**kwargs)
self.inputs = placeholders['features']
self.input_dim = num_features
self.features_nonzero = features_nonzero
self.n_samples = num_nodes
self.adj = placeholders['adj']
self.dropout = placeholders['dropout']
self.build()
def _build(self):
self.hidden1 = GraphConvolutionSparse(input_dim=self.input_dim,
output_dim=FLAGS.hidden1,
adj=self.adj,
features_nonzero=self.features_nonzero,
act=tf.nn.relu,
dropout=self.dropout,
logging=self.logging)(self.inputs)
self.z_mean = GraphConvolution(input_dim=FLAGS.hidden1,
output_dim=FLAGS.hidden2,
adj=self.adj,
act=lambda x: x,
dropout=self.dropout,
logging=self.logging)(self.hidden1)
self.z_log_std = GraphConvolution(input_dim=FLAGS.hidden1,
output_dim=FLAGS.hidden2,
adj=self.adj,
act=lambda x: x,
dropout=self.dropout,
logging=self.logging)(self.hidden1)
self.z = self.z_mean tf.random_normal([self.n_samples, FLAGS.hidden2]) * tf.exp(self.z_log_std)
self.reconstructions = InnerProductDecoder(input_dim=FLAGS.hidden2,
act=lambda x: x,
logging=self.logging)(self.z)
好例子网口号:伸出你的我的手 — 分享!
相关软件
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明


网友评论
我要评论