在好例子网,分享、交流、成长!
您当前所在位置:首页MATLAB 开发实例MATLAB语言基础 → Foundations of Data Science.pdf

Foundations of Data Science.pdf

MATLAB语言基础

下载此实例
  • 开发语言:MATLAB
  • 实例大小:2.38M
  • 下载次数:4
  • 浏览次数:48
  • 发布时间:2020-10-14
  • 实例类别:MATLAB语言基础
  • 发 布 人:LIFEi20201015
  • 文件格式:.pdf
  • 所需积分:2
 相关标签: Science SCI en IO NC

实例介绍

【实例简介】
【实例截图】

【核心代码】

Contents
1 Introduction 9
2 High-Dimensional Space 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The Geometry of High Dimensions . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Properties of the Unit Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Volume of the Unit Ball . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Volume Near the Equator . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Generating Points Uniformly at Random from a Ball . . . . . . . . . . . . 22
2.6 Gaussians in High Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Random Projection and Johnson-Lindenstrauss Lemma . . . . . . . . . . . 25
2.8 Separating Gaussians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Fitting a Spherical Gaussian to Data . . . . . . . . . . . . . . . . . . . . . 29
2.10 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 Best-Fit Subspaces and Singular Value Decomposition (SVD) 40
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Singular Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Singular Value Decomposition (SVD) . . . . . . . . . . . . . . . . . . . . . 45
3.5 Best Rank-k Approximations . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Left Singular Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Power Method for Singular Value Decomposition . . . . . . . . . . . . . . . 51
3.7.1 A Faster Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.8 Singular Vectors and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . 54
3.9 Applications of Singular Value Decomposition . . . . . . . . . . . . . . . . 54
3.9.1 Centering Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.9.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . 56
3.9.3 Clustering a Mixture of Spherical Gaussians . . . . . . . . . . . . . 56
3.9.4 Ranking Documents and Web Pages . . . . . . . . . . . . . . . . . 62
3.9.5 An Application of SVD to a Discrete Optimization Problem . . . . 63
3.10 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4 Random Walks and Markov Chains 76
4.1 Stationary Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.1 Metropolis-Hasting Algorithm . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Areas and Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2
4.4 Convergence of Random Walks on Undirected Graphs . . . . . . . . . . . . 88
4.4.1 Using Normalized Conductance to Prove Convergence . . . . . . . . 94
4.5 Electrical Networks and Random Walks . . . . . . . . . . . . . . . . . . . . 97
4.6 Random Walks on Undirected Graphs with Unit Edge Weights . . . . . . . 102
4.7 Random Walks in Euclidean Space . . . . . . . . . . . . . . . . . . . . . . 109
4.8 The Web as a Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.9 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5 Machine Learning 129
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.2 The Perceptron algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3 Kernel Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4 Generalizing to New Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.5 Overfitting and Uniform Convergence . . . . . . . . . . . . . . . . . . . . . 135
5.6 Illustrative Examples and Occam’s Razor . . . . . . . . . . . . . . . . . . . 138
5.6.1 Learning Disjunctions . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.6.2 Occam’s Razor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.6.3 Application: Learning Decision Trees . . . . . . . . . . . . . . . . . 140
5.7 Regularization: Penalizing Complexity . . . . . . . . . . . . . . . . . . . . 141
5.8 Online Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.8.1 An Example: Learning Disjunctions . . . . . . . . . . . . . . . . . . 142
5.8.2 The Halving Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.8.3 The Perceptron Algorithm . . . . . . . . . . . . . . . . . . . . . . . 143
5.8.4 Extensions: Inseparable Data and Hinge Loss . . . . . . . . . . . . 145
5.9 Online to Batch Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.10 Support-Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.11 VC-Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.11.1 Definitions and Key Theorems . . . . . . . . . . . . . . . . . . . . . 149
5.11.2 Examples: VC-Dimension and Growth Function . . . . . . . . . . . 151
5.11.3 Proof of Main Theorems . . . . . . . . . . . . . . . . . . . . . . . . 153
5.11.4 VC-Dimension of Combinations of Concepts . . . . . . . . . . . . . 156
5.11.5 Other Measures of Complexity . . . . . . . . . . . . . . . . . . . . . 156
5.12 Strong and Weak Learning - Boosting . . . . . . . . . . . . . . . . . . . . . 157
5.13 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.14 Combining (Sleeping) Expert Advice . . . . . . . . . . . . . . . . . . . . . 162
5.15 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.15.1 Generative Adversarial Networks (GANs) . . . . . . . . . . . . . . . 170
5.16 Further Current Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.16.1 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 171
5.16.2 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.16.3 Multi-Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.17 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3
5.18 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6 Algorithms for Massive Data Problems: Streaming, Sketching, and
Sampling 181
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2 Frequency Moments of Data Streams . . . . . . . . . . . . . . . . . . . . . 182
6.2.1 Number of Distinct Elements in a Data Stream . . . . . . . . . . . 183
6.2.2 Number of Occurrences of a Given Element. . . . . . . . . . . . . . 186
6.2.3 Frequent Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.2.4 The Second Moment . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.3 Matrix Algorithms using Sampling . . . . . . . . . . . . . . . . . . . . . . 192
6.3.1 Matrix Multiplication using Sampling . . . . . . . . . . . . . . . . . 193
6.3.2 Implementing Length Squared Sampling in Two Passes . . . . . . . 197
6.3.3 Sketch of a Large Matrix . . . . . . . . . . . . . . . . . . . . . . . . 197
6.4 Sketches of Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.5 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
7 Clustering 208
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.1.2 Two General Assumptions on the Form of Clusters . . . . . . . . . 209
7.1.3 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.2 k-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.2.1 A Maximum-Likelihood Motivation . . . . . . . . . . . . . . . . . . 211
7.2.2 Structural Properties of the k-Means Objective . . . . . . . . . . . 212
7.2.3 Lloyd’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.2.4 Ward’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.2.5 k-Means Clustering on the Line . . . . . . . . . . . . . . . . . . . . 215
7.3 k-Center Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.4 Finding Low-Error Clusterings . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.5 Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.5.1 Why Project? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.5.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.5.3 Means Separated by Ω(1) Standard Deviations . . . . . . . . . . . . 219
7.5.4 Laplacians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.5.5 Local spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . 221
7.6 Approximation Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.6.1 The Conceptual Idea . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.6.2 Making this Formal . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.6.3 Algorithm and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 225
7.7 High-Density Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.7.1 Single Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4
7.7.2 Robust Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.8 Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.9 Recursive Clustering based on Sparse Cuts . . . . . . . . . . . . . . . . . . 229
7.10 Dense Submatrices and Communities . . . . . . . . . . . . . . . . . . . . . 230
7.11 Community Finding and Graph Partitioning . . . . . . . . . . . . . . . . . 233
7.12 Spectral clustering applied to social networks . . . . . . . . . . . . . . . . . 236
7.13 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
8 Random Graphs 245
8.1 The G(n, p) Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.1.1 Degree Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
8.1.2 Existence of Triangles in G(n, d/n) . . . . . . . . . . . . . . . . . . 250
8.2 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
8.3 Giant Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.3.1 Existence of a giant component . . . . . . . . . . . . . . . . . . . . 261
8.3.2 No other large components . . . . . . . . . . . . . . . . . . . . . . . 263
8.3.3 The case of p < 1/n . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
8.4 Cycles and Full Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . 265
8.4.1 Emergence of Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . 265
8.4.2 Full Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8.4.3 Threshold for O(ln n) Diameter . . . . . . . . . . . . . . . . . . . . 268
8.5 Phase Transitions for Increasing Properties . . . . . . . . . . . . . . . . . . 270
8.6 Branching Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
8.7 CNF-SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
8.7.1 SAT-solvers in practice . . . . . . . . . . . . . . . . . . . . . . . . . 278
8.7.2 Phase Transitions for CNF-SAT . . . . . . . . . . . . . . . . . . . . 279
8.8 Nonuniform Models of Random Graphs . . . . . . . . . . . . . . . . . . . . 284
8.8.1 Giant Component in Graphs with Given Degree Distribution . . . . 285
8.9 Growth Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
8.9.1 Growth Model Without Preferential Attachment . . . . . . . . . . . 287
8.9.2 Growth Model With Preferential Attachment . . . . . . . . . . . . 293
8.10 Small World Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
8.11 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
8.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
9 Topic Models, Nonnegative Matrix Factorization, Hidden Markov Models, and Graphical Models 310
9.1 Topic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
9.2 An Idealized Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
9.3 Nonnegative Matrix Factorization - NMF . . . . . . . . . . . . . . . . . . . 315
9.4 NMF with Anchor Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
9.5 Hard and Soft Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
5
9.6 The Latent Dirichlet Allocation Model for Topic Modeling . . . . . . . . . 320
9.7 The Dominant Admixture Model . . . . . . . . . . . . . . . . . . . . . . . 322
9.8 Formal Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
9.9 Finding the Term-Topic Matrix . . . . . . . . . . . . . . . . . . . . . . . . 327
9.10 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
9.11 Graphical Models and Belief Propagation . . . . . . . . . . . . . . . . . . . 337
9.12 Bayesian or Belief Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 338
9.13 Markov Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
9.14 Factor Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
9.15 Tree Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
9.16 Message Passing in General Graphs . . . . . . . . . . . . . . . . . . . . . . 342
9.17 Graphs with a Single Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 344
9.18 Belief Update in Networks with a Single Loop . . . . . . . . . . . . . . . . 346
9.19 Maximum Weight Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 347
9.20 Warning Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
9.21 Correlation Between Variables . . . . . . . . . . . . . . . . . . . . . . . . . 351
9.22 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
9.23 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
10 Other Topics 360
10.1 Ranking and Social Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
10.1.1 Randomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
10.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
10.2 Compressed Sensing and Sparse Vectors . . . . . . . . . . . . . . . . . . . 364
10.2.1 Unique Reconstruction of a Sparse Vector . . . . . . . . . . . . . . 365
10.2.2 Efficiently Finding the Unique Sparse Solution . . . . . . . . . . . . 366
10.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
10.3.1 Biological . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
10.3.2 Low Rank Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
10.4 An Uncertainty Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
10.4.1 Sparse Vector in Some Coordinate Basis . . . . . . . . . . . . . . . 370
10.4.2 A Representation Cannot be Sparse in Both Time and Frequency
Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
10.5 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
10.6 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
10.6.1 The Ellipsoid Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 375
10.7 Integer Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
10.8 Semi-Definite Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 378
10.9 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
10.10Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
6
11 Wavelets 385
11.1 Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
11.2 The Haar Wavelet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
11.3 Wavelet Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
11.4 Solving the Dilation Equation . . . . . . . . . . . . . . . . . . . . . . . . . 390
11.5 Conditions on the Dilation Equation . . . . . . . . . . . . . . . . . . . . . 392
11.6 Derivation of the Wavelets from the Scaling Function . . . . . . . . . . . . 394
11.7 Sufficient Conditions for the Wavelets to be Orthogonal . . . . . . . . . . . 398
11.8 Expressing a Function in Terms of Wavelets . . . . . . . . . . . . . . . . . 401
11.9 Designing a Wavelet System . . . . . . . . . . . . . . . . . . . . . . . . . . 402
11.10Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
11.11 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
11.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
12 Appendix 406
12.1 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
12.2 Asymptotic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
12.3 Useful Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
12.4 Useful Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
12.5 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
12.5.1 Sample Space, Events, and Independence . . . . . . . . . . . . . . . 420
12.5.2 Linearity of Expectation . . . . . . . . . . . . . . . . . . . . . . . . 421
12.5.3 Union Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
12.5.4 Indicator Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
12.5.5 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
12.5.6 Variance of the Sum of Independent Random Variables . . . . . . . 423
12.5.7 Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
12.5.8 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . 423
12.5.9 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . 424
12.5.10 Bayes Rule and Estimators . . . . . . . . . . . . . . . . . . . . . . . 428
12.6 Bounds on Tail Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
12.6.1 Chernoff Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
12.6.2 More General Tail Bounds . . . . . . . . . . . . . . . . . . . . . . . 433
12.7 Applications of the Tail Bound . . . . . . . . . . . . . . . . . . . . . . . . 436
12.8 Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . 437
12.8.1 Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 439
12.8.2 Relationship between SVD and Eigen Decomposition . . . . . . . . 441
12.8.3 Extremal Properties of Eigenvalues . . . . . . . . . . . . . . . . . . 441
12.8.4 Eigenvalues of the Sum of Two Symmetric Matrices . . . . . . . . . 443
12.8.5 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
12.8.6 Important Norms and Their Properties . . . . . . . . . . . . . . . . 446
12.8.7 Additional Linear Algebra . . . . . . . . . . . . . . . . . . . . . . . 448
12.8.8 Distance between subspaces . . . . . . . . . . . . . . . . . . . . . . 450
7
12.8.9 Positive semidefinite matrix . . . . . . . . . . . . . . . . . . . . . . 451
12.9 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
12.9.1 Generating Functions for Sequences Defined by Recurrence Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
12.9.2 The Exponential Generating Function and the Moment Generating
Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
12.10Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
12.10.1 Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . 456
12.10.2 Finite Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
12.10.3 Application of Mean Value Theorem . . . . . . . . . . . . . . . . . 457
12.10.4 Sperner’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
12.10.5 Pr¨ufer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
12.11Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
Index 466

标签: Science SCI en IO NC

实例下载地址

Foundations of Data Science.pdf

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警