在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → 计算电磁学

计算电磁学

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:46.34M
  • 下载次数:49
  • 浏览次数:231
  • 发布时间:2020-09-05
  • 实例类别:一般编程问题
  • 发 布 人:robot666
  • 文件格式:.pdf
  • 所需积分:2
 

实例介绍

【实例简介】
是世界知名的计算电磁学要论著作,讲解详细到位,是不可或缺的cem教材
IEEE/OUP SERIES ON ELECTROMAGNETIC WAVE THEORY The IeEE/OUP Series on Electromagnetic Wave Theory consists of new titles as well as reprintings and revisions of recognized classics that maintain long-term archival signifi- cance in electromagnetic waves and applications Series Editor Associate Editors Donald g. Dudley Electromagnetic Theory, Scattering, and diffraction University of arizona Ehud heyman Tel-Aviv University Advisory Board Diferential Equation Methods Andreas C cangellaris Robert E. Collin Case Western Reserve Universit University of illinois Akira ishimaru Integral equation Methods Donald r. wilton University of Washington University of Houston D. S. Jones University of dundee Antennas, Propagation, and microwaves Davide, jackson University of Houston BOOKS IN THE IEEE/OUP SERIES ON ELECTROMAGNETIC WAVE THEORY Chew W.C., Waves and Fields in inhomogeneous Media Christopoulos, C, The Transmission-Line Modeling Methods: TLM Clemmow, P C, The Plane Wave spectrum representation of Electromagnetic Fields Collin, R.E., Field Theory of Guided Waves, Second edition Dudley, D. G, Mathematical Foundations for Electromagnetic Theory Elliot, R. S, Electromagnetics: History, Theory, and applications Felsen, L B, and Marcuvitz, N, Radiation and scattering of Waves Harrington, R. F, Field Computation by Moment Methods Jones, D. S, Methods in Electromagnetic Wave Propagation, Second Edition Lindell,I v, Methods for Electromagnetic Field analysis Tai, C. T, Generalized vector and Dyadic Analysis: Applied Mathematics in Field Theory Tai, C. T, Dyadic Green Functions in Electromagnetic Theory, Second Edition Van bladel, J. Singular electromagnetic Fields and Sources Wait, J, Elecromagnetic Waves in Stratified Media COMPUTATIONAL METHODS FOR ELECTROMAGNETICS EEE PRESS Series on Electromagnetic Waves Andrew F. peterson School of Electrical and Computer Engineering Georgia Institute of Technology tt L. Ray Modeling and Information Sciences laboratory Dow Agrosciences Rai mittra Department of Electrical and computer engineering Pennsylvania state universiry IEEE Antennas Propagation Society, Sponsor IEEE PRESS The Institute of electrical Oxford University Press and Electronics Engineers, Inc. Oxford Tokyo New York Melboune This book and other books may be purchased at a discount from the publisher when ordered in bulk quantities. Contact IEEE Press Marketing Attn: Special Sales Piscataway N 08855-1331 Fax:(732)981-9334 For more information about IEEE PRESS products visittheIeeeHomePage:http://www.ieee.org/ o 1998 by the Institute of electrical and electronics engineers, Inc 345 East 47th Street. New York. NY 10017-2394 No pan of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher,or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA01923, (978)750-8400, fax (978)750-4470. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley sons, Inc, lll River Street, Hoboken, NJ 07030 (201)748-6011,fax(201)748-608 987 543 ISBN07803-1122-1 IEEE Order Number: PC5581 Library of Congress Cataloging-in-Publication Data Peterson, Andrew F. 1960 Computational methods for electromagnetics /Andrew F. Peterson Scott L. Ray, Raj Mittra cm IEEE Antennas Propagation Society, sponsor. IEEE Press series on electromagnetic waves. Includes bibliographic references and index. ISBN0-7803-1122-1 1. Electromagnetism. 2. Numerical analysis. I. Ray, Scott L 1957-.Il. Mittra, Raj. Ill. IEEE Antennas and Propagation Society. IV. Title QC760P481997 621.3015194-dc21 97-39612 CIP IEEE Press 445 Hoes Lane. P.O. Box 1331 Piscataway, NJ 08855-1331 Editorial board Roger F. Hoyt, Editor in Chief John B. Anderson A.H. Haddad R. S. Muller PM. Anderson R. Herrick W.D. Reeve M. Eden G. F. Hoofnagle D. Wells M. E. El-Hawary S. Kartalopoulos S. F P. Laplante Kenneth moore, Director of IEEE Press Karen Hawkins Senior Acquisition editor Linda matarazzo. Assistant Editor Surendra bhimani, production editor Cover Design: William T Donnelly, WT Design IEEE Antennas Propagation Society, Sponsor APS Liaison to ieee Press robert mailloux Technical reviewers Andreas C. Cangellaris, University of illinois William A. Davis, virginia Tech Donald. wilton University of Houston Oxford University Press Walton Street. Oxford OX2 6DP Oxford New York Athens Auckland Bangkok Bombay C Cape Town Dar es salaam Delhi Florence Hong Kong Istanbul Karachi Kuala Lumpur Madras Madrid Melboume Mexico City Nairobi Paris Singapore Taipei Tokyo Toronto and associated companies in Berlin ibadan Oxford is a trade mark of Oxford University Press Contents PREFACE Xvii ACKNOWLEDGMENTS xix CHAPTER 1 ELECTROMAGNETIC THEORY 1 1.1 Maxwell s Equations I 1.2 Volumetric Equivalence Principle for Penetrable Scatterers 4 1.3 General Description of a Scattering Problem 5 1.4 Source-Field Relationships in Homogeneous Space 6 1.5 Duality relationships 10 1.6 Surface Equivalence Principle 10 1.7 Surface Integral Equations for Perfectl Conducting Scatterers 16 1.8 Volume Integral Equations for Penetrable Scatterers 18 1.9 Surface Integral Equations for Homogeneous Scatterers 19 1.10 Surface Integral equation for an aperture a Conducting Plane 22 1.11 Scattering Cross Section Calculation for Two-Dimensional Problems 24 1. 12 Scattering cross section Calculation for Three-Dimensional Problems 27 1. 13 Application to Antenna Analysis 28 1. 14 Summary 30 References 30 Problems 31 CHAPTER 2 INTEGRAL EQUATION METHODS FOR SCATTERING FROM INFINITE CYLINDERS 37 2.1 TM-Wave Scattering from Conducting Cylinders: EFIE Discretized with Pulse basis and Delta Testing Functions 37 2.2 TE-Wave Scattering from Conducting Cylinders MFIE Discretized with Pulse basis and delta Testing Functions 45 2.3 Limitations of pulse basisdelta Testing Discretizations 50 2.4 TE- Wave Scattering from Perfectly Conducting ips or Cylinders EFIE Discretized with Triangle g Basis and Pulse Testing Functions 52 2.5 TM-Wave Scattering from Inhomogeneous Dielectric Cylinders: Volume EFIE Discretized with Pulse Basis and delta Testing Functions 59 2.6 TE-Wave Scattering from Dielectric Cylinders: Volume EFIE Discretized with Pulse Basis and delta Testing Functions 65 2.7 TE-Wave Scattering from Inhomogeneous dielectric Cylinders: Volume MFIE Discretized with Linear Pyramid Basis and Delta Testing Functions 70 2.8 Scattering from Homogeneous Dielectric Cylinders: Surface Integral Equations Discretized with Pulse Basis and Delta Testing Functions 76 2.9 Integral Equations for Two-Dimensional Scatterers Having an Impedance Surface 80 2.10 Summary 85 References 85 Problems 86 CHAPTER 3 DIFFERENTIAL EQUATION METHODS FOR SCATTERING FROM INFINITE CYLINDERS 95 3.1 Weak Forms of the Scalar Helmholtz Equations 95 3.2 Incorporation of Perfectly Conducting Boundaries 98 3.3 Exact Near-Zone Radiation Condition on a circular boundary 100 3.4 Outward-Looking Formulation Combining the Scalar Helmholtz Equation with the Exact Radiation Boundary Condition 102 3.5 Example: TM-Wave Scattering from a dielectric Cylinder 106 ontents 3.6 Scattering from Cylinders Containing Conductors 110 3.7 Evaluation of Volumetric Integrals for the matrix Entries 112 3. 8 Local Radiation Boundary conditions on a circular Surface: The Bayliss-Turkel Conditions 115 3.9 Outward-Looking Formulation Combining the Scalar Helmholtz equation and the second-Ordu Bayliss-Turkel RBC 120 3.10 Exact Near-Zone Radiation Boundary Conditions for Surfaces of General Shape 125 3. 11 Connection between the Surface Integral and Eigenfunction RBCs 128 3. 12 Inward-Looking Differential Equation Formulation The Unimoment Method 130 3. 13 Summary 135 References 136 Problems 137 CHAPTER 4 ALGORITHMS FOR THE SOLUTION OF LINEAR SYSTEMS OF EQUATIONS 143 4.1 Naive Gaussian Elimination 143 4.2 Pivoting 146 4.3 Condition Numbers and Error Propagation in the Solution of Linear Systems 146 4.4 Cholesky decomposition for Complex-Symmetric Systems 149 4.5 Reordering Algorithms for Sparse Systems of Equations 150 4.6 Banded Storage for Gaussian Elimination 156 4.7 Variable-Bandwidth or Envelope Storage for gaussian elimination 156 4.8 Sparse Matrix Methods Employing Dynamic Storage Allocation 158 4.9 Frontal Algorithm for Gaussian Elimination 159 4.10 Iterative methods for Matrix Solution 160 4. 11 The Conjugate Gradient Algorithm for General Linear Systems 161 4. 12 The Conjugate Gradient-Fast Fourier Transform (CG-FFT) Procedure 170 4.13 Fast Matrix-Vector Multiplication: An Introduction to the Fast Multipole Method 175 4. 14 Preconditioning Strategies for Iterative Algorithms 178 4.15 Summary 179 References 180 Problems 184 CHAPTERS THE DISCRETIZATION PROCESS BASISITESTING FUNCTIONS AND CONVERGENCE 187 5.1 Inner Product Spaces 187 5.2 The Method of moments 190 5.3 Examples of Subsectional Basis Functions 192 5.4 Interpolation Error 197 5.5 Dispersion Analysis 198 5.6 Differentiability Constraints on Basis and Testing Functions 200 5.7 Eigenvalue Projection Theory 205 5.8 Classification of Operators for Several Canonical Equations 207 5.9 Convergence Arguments Based on Galerkin's Method 212 5.10 Convergence Arguments based on degenerate Kernel Analogs 213 5.11 Convergence Arguments Based on Projection Operators 217 5.12 The Stationary Character of Functionals Evaluated Using Numerical Solutions 219 5.13 Summary 224 References 224 Problems 226 CHAPTER6 ALTERNATIVE SURFACE INTEGRAL EQUATION FORMULATIONS 233 6. 1 Uniqueness of Solutions to the Exterior Surface EFIe and mfie 233 6.2 The Combined-Field Integral Equation for Scattering from Perfectly Conducting Cylinders 240 6.3 The Combined Source Integral equation for scattering from Perfectly Conducting Cylinders 246 6.4 The Augmented-Field Formulation 248 6.5 Overspecification of the Original EFiE or MFie at Interior Points 248 6.6 Dual-Surface Integral equations 250 6.7 Complexification of the Wavenumber 252 6.8 Determination of the Cutoff Frequencies and Propagating Modes of Waveguides of Arbitrary Shape Using Surface Integral equations 252 【实例截图】
【核心代码】

标签:

实例下载地址

计算电磁学

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警