实例介绍
多视图几何的经典书籍
Multiple view Geometry in Computer vision Second edition Richard d hartley Australian National University Canberra. Australia Andrew zisserman University of oxford UK S CAMBRIDGE Qt: b UNIVERSITY PRESS CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK Published in the United States of America by Cambridge University Press, New Yorl www.cambridge.org Informationonthistitlewww.cambridge.org/9780521540513 o Cambridge university Press 2000, 2003 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University press First published in print format 2004 ISBN-39780-5I-18618-9Book(EBL) ISBN-10 O-511-18618-5 eBook(EBL) ISBN-13978--52154051-3 paperback ISBN-IO 0-5 2I-5405I-8 pa aperta k Cambridge University Press has no responsibility for the persistence or accuracy of urls or external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Dedication This book is dedicated to Joe Mundy whose vision and constant search for new ideas led us into this field Contents Foreword page xI Preface X11 1 Introduction-a Tour of Multiple view geometry 1.1 Introduction-the ubiquitous projective geometry 1.2 Camera projections 1. 3 Reconstruction from more than one view 10 1.4 Three-view geometry 12 1.5 Four view geometry and n-view reconstruction 1. 6 Transfer 14 1. 7 Euclidean reconstruction 16 1. 8 Auto-calibration 1. 9 The reward i: 3D graphical models 18 1. 10 The reward l: video augmentation 19 PART O: The Background: Projective Geometry, Transformations and Esti mation 23 Outline 4 2 Projective geometry and transformations of 2D 2.1 Planar geometry 25 2.2 The 2D projective plane 26 2.3 Projective transformations 2.4 a hierarchy of transformations 37 2.5 The projective geometry of ID 44 2.6 Topology of the projective plane 46 2.7 Recovery of affine and metric properties from images 47 2.8 More properties of conics 58 2.9 Fixed points and lines 61 2.10 Closure 62 3 Projective Geometry and Transformations of 3D 65 3.1 Points and projective transformations 65 3.2 Representing and transforming planes, lines and quadrics Contents 3. 3 Twisted cubics 75 3.4 The hierarchy of transformations 3.5 The plane at infinity 79 3.6 The absolute conic 3.7 The absolute dual quadric 83 3.8 Closure 85 4 Estimation 2D Projective Transformations 87 4.1 The Direct Linear Transformation Dlt)algorithm 88 4.2 Different cost functions 93 4.3 Statistical cost functions and maximum Likelihood estimation 102 4.4 Transformation invariance and normalization 104 4.5 terative minimization method 110 4.6 Experimental comparison of the algorithms 115 4.7 Robust estimation 116 4.8 Automatic computation of a homography 123 4.9 Closure 127 5 Algorithm Evaluation and Error analysis 132 5.1 Bounds on performance 132 5.2 Covariance of the estimated transformation 138 5.3 Monte Carlo estimation of covariance 149 5.4 Closure 150 PART I: Camera Geometry and Single view Geometry 151 Outline 152 6 Camera models 153 6.1 Finite cameras 153 6.2 The projective camera 158 6.3 Cameras at infinit 6.4 Other camera models 174 6.5 Closi 176 7 Computation of the Camera matrix P 178 7.1 Basic equations 178 7.2 Geometric error 180 7. 3 Restricted camera estimation 184 7. 4 Radial distortion 189 7.5 Closure 193 8 More single view Geometry 195 8.1 Action of a projective camera on planes, lines, and conics 195 8.2 Images of smooth surfaces 200 8.3 Action of a projective camera on quadrics 201 8.4 The importance of the camera centre 202 8.5 Camera calibration and the image of the absolute conic Contents 8.6 Vanishing points and vanishing lines 213 8.7 Affine 3d measurements and reconstruction 220 8.8 Determining camera calibration K from a single view 223 8.9 Single view reconstruction 9 8.10 The calibrating conic 231 8.11 Closure 233 PART I: Two-View geometry 237 Outline 238 9 Epipolar geometry and the fundamental matrix 239 9.1 Epipolar geomety 239 9.2 The fundamental matrix F 241 9.3 Fundamental matrices arising from special motions 247 9.4 Geometric representation of the fundamental matrix 250 9.5 Retrieving the camera matrices 253 9. 6 The essential matrix 57 9. 7 Closure 259 10 3D Reconstruction of Cameras and structure 262 10.1 Outline of reconstruction method 262 10.2 Reconstruction ambiguity 264 10.3 The projective reconstruction theorem 266 10.4 Stratified reconstruction 267 10.5 Direct reconstruction -using ground truth 275 10.6 Closure 276 11 Computation of the Fundamental Matrix F 279 11. 1 Basic equations 279 11. 2 The normalized 8-point algorithm 281 11.3 The algebraic minimization algorithm 282 11. 4 Geometric distance 284 11. 5 Experimental evaluation of the algorithms 288 11.6 Automatic computation of F 290 11.7 Special cases of F-computation 293 11.8 Correspondence of other entities 294 11.9 Degeneracies 295 11.10 A geometric interpretation of F-computation 297 11.11 The envelope of epipolar lines 29 98 11 12 Image rectification 302 1.13 Closure 308 12 Structure Computation 310 12.1 Problem statement 310 12.2 Linear triangulation methods 312 12. 3 Geometric error cost function 313 12.4 Sampson approximation(first-order geometric correction) 314 Contents 12.5 An optimal solution 315 12.6 Probability distribution of the estimated 3d point 321 12.7 Line reconstruction 321 12. 8 Closure 323 13 Scene planes and homographies 325 13.1 Homographies given the plane and vice versa 326 13.2 Plane induced homographies given F and image correspondences 329 13.3 Computing F given the homography induced by a plane 334 13. 4 The infinite homography Hoo 338 13.5 Closure 340 14 Affine Epipolar Geometry 344 14.1 Affine epipolar geometry 344 14.2 The affine fundamental matrix 345 14.3 Estimating F. from image point correspondences 347 14.4 Triangulation 353 14.5 Affine reconstruction 353 14.6 Necker reversal and the bas-relief ambiguity 355 14.7 Computing the motion 357 14. 8 Closure 360 PART III: Three- View Geometry 363 Outline 364 15 The Trifocal Tensor 365 15.1 The geometric basis for the trifocal tensor 365 15.2 The trifocal tensor and tensor notation 376 15.3 Transfer 379 15. 4 The fundamental matrices for three views 383 15.5 Closure 387 16 Computation of the Trifocal Tensor T 391 16.1 Basic equations 391 16.2 The normalized linear algorithm 393 16. 3 The algebraic minimization algorithm 395 16.4 Geometric distance 396 16.5 Experimental evaluation of the algorithms 399 16.6 Automatic computation of T 400 16.7 Special cases of T-computation 404 16.8 Closure 406 PaRT IV: N-View Geometry 409 Outline 410 17 N-Linearities and multiple view Tensors 411 17.1 Bilinear relations 411 17.2 Trilinear relations 414 【实例截图】
【核心代码】
标签:
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论