实例介绍
编写matlab程序进行鱼的分类和识别,对相应数据集进行训练达到很高的准确率
【实例截图】
【核心代码】
fishRecognition
└── fishRecognition
├── features.mat
├── fish_recog
│ ├── a_history.m
│ ├── append_acceptImage.m
│ ├── append_addSpeciesSubfeature.m
│ ├── append_ami_afinv.txt
│ ├── append_ami_cafmi.m
│ ├── append_ami_cm.m
│ ├── append_ami_readinv.m
│ ├── append_CalculateSim_byResult.m
│ ├── append_cleanBinaryImage.m
│ ├── append_compareChisquare.m
│ ├── append_complexmoment.m
│ ├── append_construct_hier.m
│ ├── append_constructRecursiveNode.m
│ ├── append_constructRecursiveNode_parfor.m
│ ├── append_convertlabel.m
│ ├── append_convertScore_allNodes_15.m
│ ├── append_convertscore.m
│ ├── append_createTreeFromTable.m
│ ├── append_createZeroMeanUnitVarianceImage.m
│ ├── append_fastcoprops.m
│ ├── append_filteClassGroup.m
│ ├── append_filteClass.m
│ ├── append_findSimilarPair_coSim.m
│ ├── append_findSimilarPair_GraphDistance.m
│ ├── append_findSimilarPair_self.m
│ ├── append_findSimilarPair_top2.m
│ ├── append_fishShapeContext.m
│ ├── append_gaborfilter.m
│ ├── append_getDistanceForFish_Eu.m
│ ├── append_getDistanceForFish_Mh.m
│ ├── append_getFeatureDistances.m
│ ├── append_getFeatureDistances_rory.m
│ ├── append_getMedianKNN.m
│ ├── append_getSpecificImage.m
│ ├── append_hcolor.m
│ ├── append_hier_assignFSSubset.m
│ ├── append_hierFeatureSelection.m
│ ├── append_hierScoreToFlat.m
│ ├── append_imscomatrix.m
│ ├── append_interp_contour.m
│ ├── append_mergeSplitResult.m
│ ├── append_normalizecolor.m
│ ├── append_normalizefeature.m
│ ├── append_orienCurve.m
│ ├── append_orienFish.m
│ ├── append_resizeFish.m
│ ├── append_rotateFish_d.m
│ ├── append_sc_bdry_extract_3.m
│ ├── append_sc_bookstein.m
│ ├── append_sc_dist2.m
│ ├── append_sc_gaussker.m
│ ├── append_sc_get_samples_1.m
│ ├── append_sc_hist_cost_2.m
│ ├── append_sc_hungarian.m
│ ├── append_sc_sc_compute.m
│ ├── append_seperateFish.m
│ ├── append_shrinkImage.m
│ ├── append_sortDistances.m
│ ├── append_sumResult.m
│ ├── append_testNodeSplit.m
│ ├── append_testTrinityNode.m
│ ├── append_timeString.m
│ ├── CheckData.m
│ ├── classify_crossValidation.m
│ ├── classify_featureselection_fbtrain.m
│ ├── classify_featureselection_fw.m
│ ├── classify_featureselection_fw_parfor.m
│ ├── classify_featureselection_pool.m
│ ├── classify_featureselection_unsimilar.m
│ ├── classify_GMM_crossValidation.m
│ ├── classify_GMM_fs_fw.m
│ ├── classify_GMM.m
│ ├── classify_GMM_predict.m
│ ├── classify_GMM_train.m
│ ├── classify_HierSVM_allNode_predict.m
│ ├── classify_HierSVM_evaluate.m
│ ├── classify_HierSVM.m
│ ├── classify_HierSVM_Node_predict.m
│ ├── classify_HierSVM_predict.m
│ ├── classify_HierSVM_train.m
│ ├── classify_HierSVM_TreePredict.m
│ ├── classify_KNN.m
│ ├── classify_rejectionGMM.m
│ ├── classify_SVM_evaluate.m
│ ├── classify_SVM.m
│ ├── classify_SVM_predict.m
│ ├── classify_SVM_train.m
│ ├── classify_testHsplit.m
│ ├── computeGLCM.m
│ ├── confusionmat.m
│ ├── crossvalind.m
│ ├── data_23Species.mat
│ ├── de2bi.m
│ ├── feature_AffineMomentInvariant.m
│ ├── feature_anna_binMatrix.m
│ ├── feature_anna_phogDescriptor.m
│ ├── feature_anna_phog.m
│ ├── feature_bog.m
│ ├── feature_CSScorner.m
│ ├── feature_curvecorner.m
│ ├── feature_densityfeature.m
│ ├── feature_dsift.m
│ ├── feature_gaborfeature.m
│ ├── feature_generateFeatureVector.m
│ ├── feature_getColourHistogram.m
│ ├── feature_getComplexMoments.m
│ ├── feature_getCoOccurrenceMatrix.m
│ ├── feature_getFourierDescriptors.m
│ ├── feature_getNormalizedRG.m
│ ├── feature_histogram_features_from_image.m
│ ├── feature_histogram_features.m
│ ├── feature_kerneltrans.m
│ ├── feature_MaskAreaRatio.m
│ ├── feature_trainPHOWdict.m
│ ├── getFileNamefromID.m
│ ├── getSegmentedTailColourHistogram.m
│ ├── getVideoIDfromName.m
│ ├── gmm_mixtures4.m
│ ├── gmm_multinorm.m
│ ├── GrabCut.m
│ ├── GraphCutConstr.mexglx
│ ├── GraphCut.m
│ ├── GraphCutMex.mexglx
│ ├── grp2idx.m
│ ├── improveFishContour.m
│ ├── integra_svm_normal.m
│ ├── interface_classification.m
│ ├── interface_constructBinaryHier.m
│ ├── interface_generateFeatureSet.m
│ ├── interface_normalizeFeatureFromPrefix.m
│ ├── interface_normalizeFeatureSet.m
│ ├── interface_prediction.m
│ ├── interface_recognizeFishFromImage.m
│ ├── interface_rejection23.m
│ ├── interface_rejection.m
│ ├── interface_trainBGOTFromImage.m
│ ├── libsvm.dll
│ ├── libsvmpredict.mexa64
│ ├── libsvmpredict.mexglx
│ ├── libsvmpredict.mexw32
│ ├── libsvmpredict.mexw64
│ ├── libsvmread.mexa64
│ ├── libsvmread.mexw32
│ ├── libsvmread.mexw64
│ ├── libsvmtrain.mexa64
│ ├── libsvmtrain.mexglx
│ ├── libsvmtrain.mexw32
│ ├── libsvmtrain.mexw64
│ ├── libsvmwrite.mexa64
│ ├── libsvmwrite.mexw32
│ ├── libsvmwrite.mexw64
│ ├── loadFishData.m
│ ├── LocalColorModel.m
│ ├── parseArgs.m
│ ├── polygon_string.m
│ ├── preprocess_rotate.m
│ ├── queryFishDetectionMYSQL.m
│ ├── readFrames.m
│ ├── RecognizeFish.m
│ ├── result_1vs1.m
│ ├── result_areaundercurve.m
│ ├── result_convertClassCell.m
│ ├── result_cv_evaluate.m
│ ├── result_drawsingle_feature.m
│ ├── result_evaluate.m
│ ├── result_trajvote_byScore.m
│ ├── result_trajvote.m
│ ├── result_trajvote_single.m
│ ├── script_featureSelection_1vsRest_GMM.m
│ ├── script_featureSelection_1vsRest.m
│ ├── script_featureSelection_hierTree.m
│ ├── script_HPC_NodeSplit.m
│ ├── script_NodeSplit_N1_obselete.m
│ ├── script_NodeSplit_N1_reGroup.m
│ ├── script_NodeSplit_N2_reGroup.m
│ ├── segmentFishDetection.m
│ └── SmoothnessTerm.m
├── image.mat
├── interface_trainBGOTFromImage_update.m
├── README
├── sample_predictSpecies.m
├── sample_trainBGOT.m
└── sample_trainGMM.m
2 directories, 184 files
标签:
相关软件
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论