在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → 三维装箱问题的模型与改进遗传算法

三维装箱问题的模型与改进遗传算法

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:0.55M
  • 下载次数:25
  • 浏览次数:674
  • 发布时间:2020-08-30
  • 实例类别:一般编程问题
  • 发 布 人:robot666
  • 文件格式:.pdf
  • 所需积分:2
 

实例介绍

【实例简介】
关于三维装箱算法问题, 一些算法理论, 感觉对这方面的应用有一定帮助
144 效学的实践与认识 40着 ∑(B,*v)≤V B,B,PD,PWy=0或者1 v∈{1,2,…,D},y∈{1,2,…,W},z∈{1,2,…,H},j∈{1,2,…,n}(12 目标函数是箱子未装填物品的空间最少(亦即空间浪费最少)条件(2)确保子的1个 装填空间单元被装填不超过1次即保证物品间不会互相嵌入;(3)式说明上层物品会有支 撑,不会悬空(4),(5),(6)式说明物品装箱位置约束;(7),(8},(9)说明物品的摆放问;(11) 是箱子的容积约束 2這传算法 21遗俊法 遗传算法(GAs)是建立在达尔文进化论基础上的搜索算法,它从代表问题潜在解的 个种群( population)开始,而一个种群则由经过基因(gene)编码 coding)的一定数目的个体 individual)组成遗传算法采用了自然进化模型,如选择,交叉变异等计算开始时,一定数 目S个个体(父个体1、父个体2……)即种群随机地初始化,并计算每个个体的适应度函 数第一代也即初始代产生如果不满足优化准则,开始产生新一代的计算为了产生新一代 按照适应度选择个体,父代通过基因重组(交叉)而产生子代所有的子代按一定的概率变异 然后重新计算子代的适应度,将子代插入到种群中取代父代构成新的一代循环执行这一过 程,直到满足优化准则 22算法设计 2.21编码方法 采用矩阵编码方法,用多维数组(二维矩阵表示染色体结构,数组元素表示染色体基因, 编码清晰,易于理解,遗传算子操作方便染色体S=(L,P,Px,Py,T)来表示问题的一个解 其中: 向量L=(Li,L1,…,Ln)为待装箱物品的一个排列; 向量P=(Bn,B1,…,B3n)为对应于排列L的B,一个排列 向量Px=(PB,PB,…,PB)为对应于排列L的PB一个排列 向量Py=(PB,PB},…,PB为对应于排列L的PBx一个排列 矩阵 T=(x2=欢面 为对应于排列L的装箱物品坐标 22适值函数 问题的目标是最小化箱子的浪费空间,适应度函数可定义为空间利用率函数(S代表染 色体 C1994-2010ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net 2期 陈德良,等:三维装箱问题的模型与改进遗传算法 Fitness(s) (∑B3*v / 若∑(B;*v)≤V 否则 23解的不可行性,罚函数与评估函数 由于对染色体作遗传运算时可能获得不可行的子代,惩罚技术是用遗传算法解约束优化 问题中最常用的技术,本质上它是通过惩罚不可行解将约束优化问题转化为无约爽问题就 本文讨论的问题而言,惩罚项包括: 1)物品在装箱时不交叠,即满足约束条件{2},有 着∑By≤1 g:(S) 1,否则 2)物品装箱时不能出现悬空即满足约束条件(3),有 0若∑B-B+)>0 g2(S)= (15 1,否则 3)物品装箱不能超出箱子边界,即满足约束条件(4,(5)和(6),有 0若吃+B(Pp++Pwy*吗)≤D 1,否则 0若+B*(PD*+PWy*m)≤W 94 1,否则 (17) 95(S)= 0,若x+B*h;≤H 8) 1,否则 eat(s=∑9(S) b=1 那么,式(14)至(18)任何一个取值为1,都是不可行 评估函数 eval(S)=Fitness(S)*(5-Genalty (S) 24算法步骤 )初始化进化代数计数器,随机产生一定数目(大于设定的初始种群规模)的染色体; 2)利用式(14)检验初始种群染色体可行性,对不可行解旋转赌轮接受小部分不可行解, 与可行解构成初始种群 3)对初始种群染色体进行遗传运算; ①按照式(14)至(20)计算评估函数:⑩按顺序交叉方法产生子代;④变异算子; 4)旋转赌轮选择染色体; )重复3至4)直到完成给定的循环次数; C1994-2010ChinaAcademicJournalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net 数学的实践与认识 40卷 6)确定最好的染色体作为最优解 3实验结果 我们用C++编程实现了上述算法在配置为CPU24GH/512 Mb ram的微机上,用随 机产生的数据进行实验取遗传算法运行参数为: {群体大小进化代数,交叉概率,变异概率}-{100,50,0.85,0.05} 用随机产生的数据进行实验,求解20个种类100件物品的装箱问题,得到最好解耗时小 于1秒;计算50个种类200件物品的装箱问题,得到最好解耗时小于2秒以下是3类共 16件物品的装箱问题.实验数据图2,第!行为箱子尺『;第2至第4行为待装箱物品,每 行第1个数据表小序号第2至镌4数据分别为物品尺寸,第5个数据表示物品件数 在计算转桌中包含数据依次是:序号,是否装载,物品长,物品宽,物品高,纵向坐标横 向坐标,垂向坐标纵向长度,横向长度,垂向长度(图4).从图4可知第12号物品未能装箱, 物品装箱的顺序可以从“序号列中得出.绘制的物品装箱示意图见图3 14 21,2,乙 2,2, 图2实验数据 图3装箱示意图 文件((格式(Q帮助 新 s REPORT 耗时:.1 most g sec 次数:0 16 15 积:758000 1016每a0 库:92.875989名 寸:=280;y=1210;2=300 NO: P st Din 1 Din 2 in 3 C x C Y Pu y Pu 2 20 200 200 200 200 100 28 12B 200 200 120 100 100 200 12鲁 20 200 120 100 200 200 200 200 12B 100 100 2 120 2 120 12 150 240 158 248 150 15 5 6 1 1111111111 15 15 2每 000ao000 15 150 240 20 20 200 550 20 200 20 100 200 121 550 2D0 200 120 100 100 20 120 5s0 120 200 280 120 150 240 750 000 150 248 150 150 240 750 150 150 24a 15 200 200 9o0 0 200 200 100 20 120 900 200 12日 未装相物品 121501502年 图1计算结果 o1994-2010ChinaAcademicJournalElectronicPublishingHousealLrightsreservedhttp://www.cnki.net 2期 陈德良,等:三维装箱问题的模型与改进遗传算法 147 4结束语 装箱问题是一常见而难解的优化问题,利用遗传算法求解时,随机产生的初始解会出现 大量的不可行解(装箱物品占用空间出现大量交叠),本文将箱子内部空间划分为一个个立方 体单元:算法的第2)步对标准遗传算法做了修改通过剔除大量不可行解提高算法的收敛速 度,实验结果表明此算法运算过程及绪果稳定,具有较强的实际应用价值能有效解决复杂的 三维装箱何题,今后将继续研究将该方法运用到其它不同的有关装箱问题或组合优化问题中 参考文献 [1] John J, et al. An improved algctithra for the ncn-guillctine-constraincd cutting-stock problem(JI Operational Resee ch Society, 19 /0,+1: 141-149 [2] Coffmau E. G, et al. ver age-case analysis of cutting and packing in two dimensions [J]. Euro. J of Operatic al Reseaich, 1990, 44: 134-144 13) Fabien C, et al. A Two-phase heuristic for the two-dinensional cutting-stock problem [J. Opera- tional Research Society, 1991, 42: 39-74 4 Martello Silvano, Pisinger, David, and Vigo, Daniele. The Three-Dimensional Bin Packing Problem J. Operations Research, 2000 Informs. Vol. 48: 256-267 ]何大勇,査建中,姜义东遗传算法求解复杂集装箱装载问题方法研究向]软件学报,201,12(9):1380 1385 阿]张德富魏丽军陈青山陈火旺等.三维装箱问题的组合启发式算法软件学报,2007,18(9):2083 2089 A Mixed Integer Programming Model of Three-Dimensional Bin-Packing Problem and Improved Genetic Algorithms CHEN De-liang, 2, CHEN Zhi-ya School of Traffc &z transportation Engineering, Central South University, Changsha 41076, China) (2. Logistics School, Central South University of Forestry Technology, Changsha 410004, China Abstracts The three-dimensional bin-packing problem is complicated but a high level of interest in developing effective way to solve this kinds of NP-hard problem. First a Mixed Integer Programming model was worked out in this paper, which resorted to dividing box space into unit cube. Then an improved genetic algorithm was mainly developed. Tests on hundreds of problems show that this algorithm makes the most of volume utilization in minimal time Keywords: three-dimensional bin-packing problem; space division; mixed integer program- ming model; improved genetic algorithms o01994-2010ChinaAcademicJournalElectronicPublishinghOuse.Allrightsreservedhttp://www.cnki.net 【实例截图】
【核心代码】

标签:

实例下载地址

三维装箱问题的模型与改进遗传算法

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警