在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → 最小二乘支持向量机工具箱使用指南

最小二乘支持向量机工具箱使用指南

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:2.13M
  • 下载次数:10
  • 浏览次数:168
  • 发布时间:2020-08-26
  • 实例类别:一般编程问题
  • 发 布 人:robot666
  • 文件格式:.pdf
  • 所需积分:2
 

实例介绍

【实例简介】
最小二乘支持向量机工具箱使用指南详细介绍了各种函数的使用方法,并带有分类和回归分析的程序例子。
Preface to Ls-SVMLab v18 LS-SVMLab v1 8 contains some bug fixes from the previous version When using the preprocessing option, class labels are not considered as real variables. This probleIn occurred when the nUnber of dimensions were larger thanl the nuinber of data point The error "matrix is not positive definite"in the crossvalidatelssvm command has been olved e The error in the robustlssym command with functional interface has been solved. robustlssvm now only works with the object oriented interface. This is also adapted in the manual at pages 33 and 99 The crror "Rcfcrcncc to non-cxistent ficld implementation " has bccn solved in the bay_optimize command The ls-sVMlab Team Heverlee, belgium June 2011 4 Preface to LS-SVMLab v17 We have added new functions to the toolbox and updated some of the existing commands with respect to the previous version v1.6. Because many readers are familiar with the layout of version 1.5 and version 1.6, we have tried to change it as little as possible. Here is a summary of the main changes The major diffcrencc with the previous vcrsion is the optimization routinc uscd to find the minimum of the cross-validation score function. The tuning procedure consists out of two steps: 1) Coupled Simulated Annealing determines suitable tuning parameters and 2) a simplex method uses these previous values as starting values in order to perform a fine tuning of the parameters. The major advantage is speed. The number of function evaluations needed to find optimal parameters reduces from +200 in v1.6 to 50 in this version The construction of bias-corrected approximate 100(1-a)% pointwise/ simulataneous con- fidence and prediction intervals have been added to this version Some bug-fixes are performed in the function roc. The class labels do not need to be +1 or but can also be 0 and 1. The conversion is automatically done The ls-SVMLab Team Heverlee. belgium September 2010 5 6 Preface to Ls-SVMlab v16 We have added new functions to the toolbox and updated some of the existing commands with respect to the previous version v1.5. Because many readers are familiar with the layout of version 1.5, we have tried to change it as little as possible. The major difference is the speed-up of several methods. Here is a summary of the main changes Chapter/solver/function What's new 1. A birds eye on LS-SVMLab 2. LS-SVMLab toolbox examples Roadmap to LS-SVM; Addition of more regres- sion and classification examples; Easier interface for multi-class classification; Changed implementation for robust LS-SVM 3. Matlab functions ossibility of regression or classification using only one command! The function validate has been deleted; Faster(robust )training and (robust )model selection criteria are provided; In case of robust re gression different weight functions are provided to be used with iteratively reweighted LS-SVM 4. LS-SVM solver All CMEX and/or C files havc bccn rcmovcd. Thc linear system is solved by using the Matlab com nd "backslash”(\) The Ls-SVMLab Team Heverlee, Belgium June 2010 8 Contents 1 Introduction 11 birds eye view on ls-syMlab 13 2.1 Classification and regression 13 2.1.1 Classification extension 14 14 2.1.3 12.2 NARX models and prediction 15 2.3 Unsupervised learnin 15 2.4 Solving large scale problems with fixed size Ls-svm 3 LS-SVMlab toolbox examples 17 I roadmap tO LS-SVM 17 3. 2 Classificatio 17 3.2.1 Hello world 17 3.2.2 Example 19 Using the obiect oriented interface: initIssvi 3.2.4 LS-SVM classification: only one command line away! 21 3.2.5 Bavesian inference for classification 13.2.6 Multi-class coding 24 3. 3 Regression 25 simple example 25 33.2 SVM regression only one command line away 3.3.3 Bayesian Inference for Regression 3.3.4 Using the obiect oriented model interfac 29 3.5 Confidence/Predition Intervals for Regression 3.3.6 Robust rcercssion 33 33 M ultiple output regression 35 3.3.8 A time-series example e laser data prediction 36 3.3.9 Fixed size LS-SVM 37 3.4 Unsupervised learning using kernel principal component analysis 40 A MATLAB function 41 A 1 Gcncral notation LnlctIOll况 Training and simula tion 42 A.2.2 Obiect oriented interfac 23T d simulating functie 44 I functi 45 Tuning sparseness and robustnes 46 A 2.6 Cl 47 2.7B framework 48 CONTENTS A. 2. 8 NARX models and prediction 49 A 2.9 Unsupervised learnlin 50 A 2.10 Fixed size IS-SVM 51 A 2.11 demos 52 A 3 Alphabetical list of function calls A3, 2 bay-errorban 54 A 3.3 bay_initlssvml 56 A 3.4 bay lssvm .......57 A.3.5 bay-1ssymard 59 A. 3. 6 bay modoutclas 61 A.3.7 bay _optimize 3. 8 bav rr A 3.9 cilssvml 67 A 3.10 code, codelssvm 68 A 3.11 crossvalidatel 71 A..12 deltabl A.3.13d k 75 ossvalidat 76 A 3.16 initlssym, changelssvm A. 3. 17 kentrop A.3.18 kernel, matrix 81 A.3.19k 8 84 A 3.21 leaveoneout In-kernel, poly-kerne 上 kerne A 3.23 inf, mae. medae, misclass a mse A.3,241 90 91 dl 94 pre上ssvm stess A 3.30 rcrossvalidatel A.3.31 ridgeregress 98 A.3. 32 robust lssvm 99 A 3.33 roc 100 102 103 A 3.36 tunelssvm, linesearch gridsearch ....,,.,,,.105 A.3.37 windowize &z windowizeNARX 110 【实例截图】
【核心代码】

标签:

实例下载地址

最小二乘支持向量机工具箱使用指南

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警