实例介绍
随机规划与模糊规划全本,是一本很好的参考用书
序言 在现实世界上,人们制定决策时经常会磁到两类不确定性现 象:一是随机现象,一类是模糊现象。揹述、刻匦随机现象的量 称为随机变量,而描述、刻画模糊现象的量称为模糊集。为了方 便,我们不妨把二者分别称为随机参数和模糊参数。含有随机和 模糊参数的数学规划分别称为随机规划和模糊规划。既然随机性 和模糊性都是用来处理不确定性的,我们将随机规划和模糊规划 统称为不确定规划。本书将为随机规划和模糊规划提供统一的原 理,并为一般不确定环境下的优化理论打下基础 在很多实际问题中,如管理、工程、经济、工业以及生态等领 域,系统是一个广泛使用的概念,而一个复杂的决策系统通常具 有多维性、多样性、多功能性和多准则性,并带有随机或模糊参 数。对于随机规划间题中所出现的随机变量,出于不同的管理目 的和技术要求,采用的方法自然也不同。第一类处理随机规划中 随机变量的方法是所谓的期望值模型,即一种在期望值约束下 使目标函数的概率期望达到最优的模型.第二类方法是 Charnes 和 Cooper提出的机会约束规划,主要针对约束条件中含有随机变 量,目必须在观测到随机变量的实现之前作出决策的情况。考虑 到所作决策在不利情况发生时可能不满足约束条件,而采用一种 原则:即允许所作决策在一定程度上不满足约束条件,但该决策 应使约束条件成立的概率不小于某一置信术平α。第三类隨杋规 划是相关机会规划,是使事件的机会函数在不确定环境下达到 最优的方法,在确定性规划以及期望值模型和机会约束规划中 随机规划与模糊规攴 当对实际问题建模以后,可行集本质上是确定的,这就可能导致 所给出的最优解在实际中无法执,而相关机会规划并不假定可 行集是确定的。实际上相关机会规划的可行集被描述为所谓的不 确定环境。虽然相关机会规划也给出一个确定的解,但这个解只 是要求在安际问题中尽可能地执行。显然,相关机会规划的这 特点与确定性规划、期苤值棋型和机会约束规划是截然不同的 沿用随机环境中枕会约東规划的思想,在模榈环境中,假定 模糊约東成立的可能性不小于置信水平α,这样就可以建立模糊 机会约束规划、机会约束多目标规划和机会约束目标规划.类似 地,沿用随机环境下相关机会规划的思想,亦有模糊相关机会规 划、相关机会多目标规划和相关机会目标规划理论 随着计算机的飞速发展和革新算法的不断涌现,许多复杂的 优化问题已可以通过计算机求解。虽然目前计算机的能力还只能 处理小规模的不确定规划模型,但是,我们坚信计算机的能力将会 大幅度提高。这就为求解更加复杂的优化问题提供了一个契机 它不仅表现在已有的复杂模型可以通过计算机求解,而且表现在 我们可以提出更丰富的建模恿想。基于这一事实,本书采用全新 的观点处理随机娜划和模糊规划,并且允许不确定规划中的目标 函数和约束函数是非线性的,随机参数的密度函数或模糊参数的 隶属函数可以有更灬般的形式,模型的结构可以更加复杂等等 夲书为求解传统方法所不能解决的随机规划和模糊规划模型, 设计了一系列基于随杌模拟或模糊模拟的遗传算法、虽然遗传算 法有耗时多、速度慢等缺点,但对传统方法无法处理的问题,遗 传算法是一种非常有效的方法,而且随着计算机速度的提高,实 际间题将可以在合理的计算时间内得到解决 本书共分12章。第1章主要介绍数学规划的基本概念,如线 性规划、非线性规划、多目标规划、目标规划以及整数规划,同 时也勾画出了随机规划私模糊规划的理论框架.第2章为求解优 序言 化问题,如单目标规划、多目标规划和目标规划,提供了一个遗 传算法,并通过一些数值例子解释了遗传算法的有效性。第3章 列举了生成随杌数的方法,并介绍模糊集合的一些基础理论,以 及随机模拟和模粉模拟的技术。第4章给出了期望值模型的一些 基本性质。第5章讨论了带有随机参数的机会约束规划。第召章 给出一些机会约束规划模型的应用。第7章讨论了随机环境下的 相关机会规划模型。第8章通过相关机会规划模型对随机决策系 统进行了建模。第9章把随机机会约束规划推广到模糊机会约東 规划。而第10章把随机相关机会规划推广到模糊相关机会约束规 划.传统的数学规划模型提供的是使一些目标函数达到最优的清 晰决策,然而,对实际问题,有讨应该提供的是模糊决策而不是 清晰决策,所以第11章建立了带有模糊决策的模糊规划的理论构 架。在第9章和第11章所讨论的模糊系统中的机会约束规划模型 夲质上是一种 Maximax模型(乐观模型),即极大化可能达到的最 大收益.与 Maximax模型的思想不同,第12章介绍了Mamx 机会约束规划模型,其思想是极大化可能达到的最小收益 本书可作为高等院校有关专业的高年级大学生和研充生的教 材,也可作为运筹学、管理科学、计算机科学、系统科学、信息科 学与工程等方面的学者和技术人员的参考书 目录 序 第1章数学规划筒介 11线性规划 1.2非线性规划 1.3多目标规划 6 14目标规划 8 1.5整数规划 16不确定规划 12 第2章遮传算法 优化间题 22表示结构 18 23处理约束条件 8 24初始化过程 2评价函数 20 2选择过程 22 27交叉操作 23 28变异操作 4 29遗传算法程序 24 2I0遍传算法与上升法 25 211数值例子 26 随机规划与模糊规划 第3章随机棋拟和棋糊棋拟 a了 31随机数的产生 38 32随机模拟 47 33模糊集合理论 50 34模糊模拟 57 第4章期望值樸型 64 4.1期望值算子 65 2期望值模型 66 43凸性 68 4.4补偿模型..、 7( 45基于随机模我的遗传算法 46注 73 第5章机会约束划 7生 51机会约束规划模型 5.2确定生等价类 53—些性质 83 54随机模拟 88 5.5基于随机模拟的遗传算法 56注 94 第6章机会约束规划的应用 05 61生产过程 05 62饲料混合问题 6.3随机资源分配 98 6开放存储网络 01 65资金预算 112 月录 11 第7章相关机会规划 L17 71背景;供给-分配系统 17 7.2随机集合 121 7.3不确定坏璄 124 74事件和机会函数 125 7.5相关机会规划 ..,,]28 76相关机会多目称规划,, 130 7.7相关机会目标规划 133 7.8执行墩优解 36 79机会函数的随机模拟 137 7.10基于随机模拟的遗传算法 138 711注 143 第8章随机决簟系統媓模 144 8.1水资源供给一分配问题 144 82生产过程 l52 83开放存储网络 154 84资金预算 15g 第9章模糊机会约束规划 164 91机会约束规划模型 165 9.2清晰等价类. 168 9.3模糊模拟 173 94基于模糊模拟的遗传算法 175 95资金预算 179 6注 183 第10章模糊环境下的相关机会规划 184 10.1相关机会规划 184 随机规划与糢糊规划 102相关机会多目标规划 186 10.3相关机会目标规划 188 10.4杌会函教的模糊模拟 191 10.5基于模糊模拟的遗传算法 92 106注 197 第11章带有模糊决策的模糊规划 18 1.1模糊决策 198 112机会约束规划模型 20( 113相关机会规划模型 202 14模糊模拟 1.5基于模糊模拟的遗传算法 212 11.6数值例于 216 17注 222 第12章 Minimax机会约束规划模型 223 121 Marina模型 223 122 Minimax模型 227 123 Minimax与Ma 2x1卫ha 229 12.4模糊模拟 232 125数值例于 23生 126注 238 参考文献 240 些常用的符号 251 索引 252 第1章 数学规划简介 数学规划是运筹学的一个重要分支,并已被广泛地应用到很 多领域数学规划可以描述为在一些数学关系诸奶等式或不等式 表示的约束条件下,求一个(或一组)数的极值问题的方法.常 見的数学规划有线性规划、非线性规划、多目标规划、目标规划 整数规划、多层规划、动态规划以及本书重点讨论的随机规划和 模糊规划等等 本章里,介绍一些数学规划的基本概念和处理技术,为引入 殖机规划和模糊规划打下基硼 1.1线性规划 作为优化领域最重要的工具之一,线性规划是用来处理在线 性等式及不等式组的约束条件下求线性函数的极值问题的方法 线性规划的标准形式可以写为 maKC11千C22+…十Cun 12:+媛122+…+a1nxn=竹1 a211千22+…axn=b 4m121+(m232+…+ammn=bm 3≥D3=1,2 【实例截图】
【核心代码】
标签:
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论