在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → 通信系统(西蒙赫金)答案.pdf )

通信系统(西蒙赫金)答案.pdf )

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:10.40M
  • 下载次数:7
  • 浏览次数:623
  • 发布时间:2020-08-11
  • 实例类别:一般编程问题
  • 发 布 人:robot666
  • 文件格式:.pdf
  • 所需积分:2
 

实例介绍

【实例简介】
通信系统(西蒙赫金)答案.pdf ) 英文版
A 2Tf sin( 2f t) Therefore, sin( 2if t) ElY(t)]= 2nf E[A】=0 sin-(2丌ft) Var[Y(t)]= Var [A] (2Tf sin(2f t) (1) (2If Y(t) is Gaussian-distributed, and so we may ex press its probability density function as Y(t) y A sin(arf t exp[- sin (2Tf t) o A (b) From Eq. (1)we note that the variance of y(t)depends on time t, and so y(t)is nonstationary. (c)For a random process to be ergodic it has to be stationary. Since y(t) is nonstationary it follows that it is not ergodic Problem 1.4 (a) The expec ted value of Z(t)is EIZ(t4 )] cos( art,)E[X]+ sin(2t, )Ely] Since E[X] =E[Y] =0, we deduce that E[z(t,)]=0 Similarly, we find that E[Z(t,)]=0 Next, we note that Cov[Z(t,)Z(t )] E[Z(t, )z(t)] EtIX cos(2t1)+Y sin(2t, )]CX cos(2Tto)+Y sin(2t)J] cas(2t,)cos(2 t)EIX [cos( 2nt sin(2nt)+sin(2Tt )cos(2t)JE[XY + sin( 2it)sin(2It E[Y] Noting that E[X]=σy+E[]}-=1 E[Y ]=o++E[Y] E[XY ] 0 we obtain cov[Z〔t1)Z(t,)]=cos(2mt,)cos(2πt。)+in(2rt1)in(2mt2) cos[2,。)] (1) e七 he process Since ever y weighted sum of the samples, Z(t) is Gaussian, it follows that z(t)is a Gaussian process. Furthermore, we note that z〔t) E[z(t,)]=1 This result is obtained by putting t,=t2 in Eq.(1). Simil arly, o(t。)=E[z(t)]=1 Therefore, the correlation coefficient of Z(t,)and Z(t)1s Cov[z(t,) z(to ) d(t )°z(t) =c。s[2r(t-t。〕] Hence, the joint probability density function of Z(t, and z(t) 1,2(t\(z1, 22)=c explO(z,, 2 z〔t, )3 where 2r1-cos[2π(t,-t,)] I sini2r(t→t) Q(21,z 2 2cos[2π〔t 2sin[2m(七1。)] 1-2)]z122+z (b)We note that the covariance of z(t,)and z(t,) depends only on the time difference t1-t2. The process 2(t)is therefore wide-sense stationary. Since it is Gaussian it is al so strictly stationary Problem 1. 5 (a) Let X〔t)=A+Y(t) where A is a constant and y(t)is a zero-mean random process. The autocorrelation function of x(t)is Ry(τ)=E[X(t+τ)x(t)] EI[A+Y(t+τ〕][A+Y(t)] E[A-+AY(t+τ)+AY(t)+Y〔t+τ)Y(t)] Which shows that R, c X ( T contains a constant component equal to A (b) Let X(t)= A cos(2Tf t+0)+z(t where Ac cos(2f t+e)represents the sinusoid al component of x(t) and 6 is a random phase variable. The autocorrelation function of X(t)is Ry()=E[x(t+τ)x(t)] =E{ A cos(2mfot+2rfaτ+θ)+z(t+τ)[A,oos(2nmft+6)+Z(t)]} =E[Acos(2πft+2rπfτ+θ)cos(2rft+6)] +E[(t+T )A cos(2f t +0)] +ElA cos(2f t+ 2Tf t +6)Z(t)] +E[Z(t+τ)z(t)] A22)c(2nf、τ)+Rn(r) which shows that R(t)contains a sinusoidal com ponent of the same fr equency as x(t) Problem 1.6 (a) We note that the distribution function of X(t)is 5 X<0 x(t)(x)={1 2 0<x<A A<X and the corresponding probability density function is x(t)(x)=56(x)+.(x-A) which are illustrated below Xe) 1.0 于(x) x比) 0 A (b) By ensemble-aver aging, we have E[X(t)]=了xx(t) (x)dx =了x[6(x)+ 2 o(x-A)] dx The autocorrelation function of x(t)is x(T)=EtX(t+t)X(t)] Define the square function Sq (t)as the square-wave shown below: sa (t) 0 0 0 T 2 2 0 Then, we may write R (τ)=E[Asq(t-t τ T t AS Sqr (t-t +t)Sqr (t-t)fr(ta)dt T/2 A了 To/2T(t t+τ)Sqr〔t d t d 0 (1-2),Irl Since the wave is per ic with period To, Ry(T)must al so be periodic with period (c) On a time-aver aging basis, we note by ins pection of Fig, P/,s that the mean is <x(t)>= A Next, the autocorrelation function 2 <x(t+τ)x(t)〉= x(t+τ)x(t)dt 0-T。/2 0 has its maximum val ue of a/2 at t =0, and decreases linearly to zero at t T/2. Therefore, x(t+)x(t)>=分-(1 Again, the autocorrelation must be periodic with period T (d)We note that the ensemble-averaging and time-aver aging procedures yield the same set of results for the mean and autocorrelation functions. Therefore, x(t)is ergodic in both the mean and the autocorrelation function. since ergodicity implies wide-sense stationarity, it follows that x(t)must be wide-sense stationary Problem 1.7 (a) For It>T, the random variables x(t)and X(t+t )occur in different pul se intervals and are there fore inde pendent. Thus, E[X(t〕x〔t+τ)]=E[X(t)]E[x(t+τ)], τ!>T。 Since both amplitudes are equally likely, we have E [X(t)] =E[x(t+)] A/2. Therefore forlτl>T, R〔τ)=" For It I< T, the random variables occur in the same pul se interval ift.<T -itl.If they do occur in the same pul se interval, Ex(+xGt+=2k2+202 We thus have a condition al ex pectation: E[x(t)X(t+τ)]=A/2, tA<T-hτl A/4, otherwi se vver aging over t,, we get T Rx(r)=∫ T-|τ 2 dt,+∫ 0 T-lt 4T dt d (b) The po wer spectral density is the Fourier tr ansform of the autocorrelation function The Fourier transform of (2)8 T<T =0 other wi se v G(f)=T sinc (fT). Therefore Sx(f)=46(f+“4sinc() We next note that A 6(fdf a A Tsinc (fT)df.A' s(f)df:R、(0)= x It follows therefore that half the po wer is in the dc component Problem 1.8 Since Y(t)=gn(t)+x(t)+73/2 and g(t)and x(t)are uncorrel ated, then p (τ) Where gP T)is the aut oc ov ariance of the periodic com po nent and (τ) is the autocov ariance of the rand om component. C\(r)is the plot in figure P/ 8 shifted down by 3/2, remov ing the dc com ponent gp r)and C(r)are plotted below C(7) ep T 0.5 C( Both g〔t)andx(t) have zero ean。 verage (a) The, power of the period ic component g_(t)is there fore, g(t) dt= (0) 0-T/2p 2 (b)The po wer of the random component x(t)is E[x2(t)=C,(0)=1 Problem 1.9 (a)xr (t)=ErX(t+t )Y(t) Re placingτwith- XY(-T)=ELX(t-t )Y(t) 【实例截图】
【核心代码】

标签:

实例下载地址

通信系统(西蒙赫金)答案.pdf )

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警