在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → Neural Network Design (2nd Edition)

Neural Network Design (2nd Edition)

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:11.27M
  • 下载次数:6
  • 浏览次数:258
  • 发布时间:2020-08-01
  • 实例类别:一般编程问题
  • 发 布 人:robot666
  • 文件格式:.pdf
  • 所需积分:2
 

实例介绍

【实例简介】
Neural Network Design (2nd Edition)为大牛Martin T. Hagan巨作,深入浅出地讲解了深度学习的所有算法原理,非常适合全面深入了解人工神经网络及深度学习
Copyright by Martin T Hagan and Howard B Demuth. All rights reserved. No part of the book may be reproduced stored in a retrieval system, or transcribed in any form or by any means electronic, mechanical, photocopying, recording or otherwise-without the prior permission of Hagan and Demuth MTH To Janet. Thomas Daniel. Mom and dad HBD To Hal, Katherine, Kimberly and Mary MHB To Leah. Valerie. Asia Drake. coi d Morgan ODJ To: Marisela, Maria victoria, Manuel, Mamd y papa Neural Network Design, 2nd Edition, eBook oVERHEADS and DEMONSTRATION PRoGraMs can be found at the following website hagan. okstate. edu/nnd.html A somewhat condensed paperback version of this text can be ordered from Amazon Contents reface Introduction Objectives History 1-2 Applications Biological Inspiration Further Reading Neuron model and Network architectures h Objectives Theory and Examples 2-2 Notation 2-2 Neuron model sing」le- Input Neuron 2-2 Transfer functions 2-3 Multiple-Input Neuron Network Architectures A Layer of Neurons 2-9 Multiple Layers of Neurons 2-10 Recurrent Networks 2-13 Summary of Results 2-16 Solved Problems 2-20 plogue 2-22 Exercises 2-23 An illustrative Example 3 z Objectives Theory and Examples 3-2 Problem statement 3-2 Perceptron 3-3 Two-Input case 3-4 Pattern Recognition example Hamming network 3-8 Feedforward layer 3-8 Recurrent Layer 3-9 Hopfield Network 3-12 Epilogue 3-15 Exercises 3-16 Perceptron Learning rule Objectives Theory and EXamples 4-2 Learning Rules 4-2 Perceptron Architecture 4-3 Single-Neuron Perceptro 4-5 Multiple-Neuron Perceptron 4-8 Perceptron Learning Rule 4-8 Test proble 4-9 Constructing Learning Rules 4-10 Unified Learning Rule 4-12 Training Multiple-Neuron Perceptrons 4-13 Proof of Convergence 4-15 Notation 4-15 Proof 4-16 Limitations 4-18 Summary of Results 4-20 Solved problems 4-21 Epilogue 4-33 urther Reading 4-34 Exercises 4-36 Signal and Weight Vector Spaces 5 Objectives Theory and Examples 5-2 Linear Vector Spaces Linear Independence Spanning a Space 5-5 Inner product Norm 5-7 Orthogonality 5-7 Gram-Schmidt Orthogonalization 5-8 Vector Expansions Reciprocal Basis vectors 5-10 Summary of Results 5-14 Solved Problems 5-17 Epilogue 5-26 Further Reading 5-27 Exercises 5-28 6 Linear transformations for Neural networks Objectives Theory and Examples Linear Transformations 6-2 Matrix Representations Change of Basis 6-6 Eigenvalues and Eigenvectors 6-10 Diagonalization 6-13 Summary of Results 6-15 Solved problems 6-17 Epilogue 6-28 Further Reading 6-29 xercises 6-30 Supervised Hebbian Learning 7 Objectives 7-1 Theory and Examples 7-2 inear associato 7-3 The Hebb rule 7-4 Performance Analysis 7-5 Pseudoinverse rule Application 7-10 Variations of hebbian le 7-12 su ummary of results y 17-4 Solved Problems Epilogue 7-29 Further readi 7-30 Exercises 7-31 8 Performance Surfaces and Optimum Points Objectives Theory and Examples 8-2 Taylor Series 8-2 Vector case 8-4 Directional derivati Minima Necessary Conditions for Optimality First-Order conditions 8-10 Second-Order Conditions 8-11 Quadratic Functions 8-12 Eigensystem of the Hessian 8-13 Summary of results 8-20 Solved problems 8-22 plogue 8-34 Further Reading 8-35 Exercises 8-36 LL Performance Optimization 9 Objectives Theory and Examples 9-2 Steepest Descent 9-2 Stable Learning Rates 9-6 Minimizing along a Line 9-8 Newton's method 9-10 Conjugate Gradient 9-15 Summary of Results 9-21 Solved problems 9-23 Epilogue Further Reading 9-38 Exercises 9-39 10 Widrow-Hoff Learning Objectives 10-1 Theory and EXamples 102 ADALINE Network 10-2 Single ADALINE 10-3 Mean Square Error 10-4 LMS Algorithm 10-7 Analysis of Convergence 10-9 Adaptive Filtering 10-13 Adaptive Noise Cancellation 10-15 Echo Cancellation 10-21 Summary of Results 10-22 Solved Problems 10-24 Epilogue 10-40 Further Reading 10-41 Exercises 10-42 Backpropagation 11 Objectives 11-1 Theory and Examples Multilayer Perceptrons 11-2 Pattern Classification 11-3 Function Approximation 11-4 The Backpropagation algorithm 11-7 Performance Index 11-8 Chain Rule Backpropagating the Sensitivities 11-11 ary 11-13 Example 11-14 Batch vS Incremental Training 11-17 Using Backpropagation 11-18 Choice of Network architecture 11-18 Convergence 11-20 Generalization 1122 Summary of Results 11-25 Solved Problems 11-27 Epilogue 11-41 Further Reading 11-42 Exercises 11-44 12 Variations on Backpropagation Objectives 12-1 Theory and Examples 122 Drawbacks of Backpropagation 12-3 erformance Surface EXample 12-3 Convergence Example 12-7 Heuristic Modifications of Backpropagation 129 Momentum 12-9 Variable Learning Rate 12-12 Numerical Optimization Techniques 12-14 Conjugate gradient 12-14 Levenberg-Marquardt algorithm 12-19 Summary of Results 12-28 Solved Problems 12-32 Epilogue 12-46 Further Reading 12-47 Exercises 12-50 Generalization 13 Objectives 13-1 Theory and Examples 13-2 Problem statement 13-2 Methods for Improving Generalization 13-5 Estimating generalization error 13-6 Early Stopping 13-6 Regularizati 13-8 Bayesian Analysis 13-10 Bayesian Regularization 13-12 Relationship Between Early Stopping and Regularizat 13-19 Summary of Results 13-29 Solved Problems 13-32 13-44 Further Reading 13-45 Exercises 13-47 14 Dynamic Networks Objectives 14-1 Theory and examples 14-2 Layered Digital Dynamic Networks 14-3 Example dynamic Networks 14-5 Principles of Dynamic Learning 14-8 Dynamic Backpropagation 14-12 Preliminary definitions 14-12 Real Time Recurrent Learning 14-12 Backpropagation-Through-Time 14-22 Summary and comments on Dynamic T raining 14-30 Summary of Results 14-34 Solved Problems 14-37 Epilogue 14-46 Further Reading 14-47 Exercises 14-48 【实例截图】
【核心代码】

标签:

实例下载地址

Neural Network Design (2nd Edition)

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警