实例介绍
ACL2018优质论文合集,按照任务类别进行了分类,PDF文件名即为论文名称
【实例截图】
【核心代码】
20466162ACL2018优质论文合集
└── ACL2018优质论文合集
├── 百度
│ ├── Adaptations of ROUGE and BLEU to Better Evaluate Machine Reading Comprehension Task.pdf
│ ├── DuReader a Chinese Machine Reading Comprehension Dataset from Real-world Applications.pdf
│ ├── Joint Training of Candidate Extraction and Answer Selection in Reading Comprehension.pdf
│ └── Multi-Passage Machine Reading Comprehension with Cross-Passage Answer Verification.pdf
├── 腾讯
│ ├── Automatic Article Commenting the Task and Dataset.pdf
│ ├── Learning Domain-Sensitive and Sentiment-Aware Word Embeddings.pdf
│ ├── Towards Robust Neural Machine Translation.pdf
│ ├── Transformation Networks for Target-Oriented Sentiment Classification.pdf
│ └── hyperdoc2vec Distributed Representations of Hypertext Documents.pdf
├── 强基线
│ ├── Baseline Needs More Love On Simple Word-Embedding-Based Models and Associated Pooling Mechanisms.pdf
│ ├── Strong Baselines for Neural Semi-supervised Learning under Domain Shift.pdf
│ └── Unsupervised Random Walk Sentence Embeddings A Strong but Simple Baseline.pdf
├── 探索模型
│ ├── Deep RNNs Encode Soft Hierarchical Syntax.pdf
│ ├── Deep-speare A Joint Neural Model of Poetic Language, Meter and Rhyme.pdf
│ ├── Exploring Semantic Properties of Sentence Embeddings.pdf
│ ├── LSTMs Can Learn Syntax-Sensitive Dependencies Well, But Modeling Structure Makes Them Better.pdf
│ ├── LSTMs Exploit Linguistic Attributes of Data.pdf
│ ├── Numeracy for Language Models Evaluating and Improving their Ability to Predict Numbers.pdf
│ ├── Some of Them Can be Guessed! Exploring the Effect of Linguistic Context in Predicting Quantifiers.pdf
│ └── What you can cram into a single vector Probing sentence embeddings for linguistic properties.pdf
├── 最佳论文
│ ├── Finding syntax in human encephalography with beam search.pdf
│ ├── Know What You Don't Know Unanswerable Questions for SQuAD.pdf
│ ├── Learning to Ask Good Questions Ranking Clarification Questions using Neural Expected Value of Perfect Information.pdf
│ └── Let’s do it “again” A First Computational Approach to Detecting Adverbial Presupposition Triggers.pdf
├── 对抗性实例
│ ├── Adversarial Contrastive Estimation.pdf
│ ├── HotFlip White-Box Adversarial Examples for Text Classification.pdf
│ └── Towards Robust Neural Machine Translation.pdf
├── 改进评估方法
│ ├── Improving Text-to-SQL Evaluation Methodology.pdf
│ ├── The Hitchhiker’s Guide to Testing Statistical Significance in Natural Language Processing.pdf
│ └── The price of debiasing automatic metrics in natural language evaluation.pdf
├── 更难的数据集
│ ├── Constructing Datasets for Multi-hop Reading Comprehension Across Documents.pdf
│ └── The NarrativeQA Reading Comprehension Challenge.pdf
├── 理解最先进的模型
│ ├── Breaking NLI Systems with Sentences that Require Simple Lexical Inferences.pdf
│ └── Did the Model Understand the Question.pdf
└── 用多种语言和资源较少的语言评价
├── A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings.pdf
├── On the Limitations of Unsupervised Bilingual Dictionary Induction.pdf
└── Triangular Architecture for Rare Language Translation.pdf
11 directories, 37 files
标签:
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论