实例介绍
【实例简介】
2016中国人工智能大会(CCAI 2016),机器学习的明天论坛,北京大学信息科学技术学院机器感知与智能教育部重点实验室教授林宙辰的演讲PPT。报道:http://geek.csdn.net/news/detail/97844
Nonlinear Optimization CCAI 2016 中国人工智能大会 Past (-1990s Major theories and techniques of optimization completed 1960s 1960s-1990s boom due to the invention of computers · Zeroth order methods Interpolation Methods Pattern Search Methods First order methods Coordinate descent Conjugate gradient (Stochastic) Gradient/Subgradient Descent Ellipsoid method Quasi-Newton Methods (Augmented)Lagrangian Method of multipliers Nonlinear Optimization CCAI 2016 中国人工智能大会 Past (-1990s Second order methods Newton's methods Sequential Quadratic Programming Interior point methods ·。 Nonlinear Optimization CCAI 2016 中国人工智能大会 Why first order methods? Converge relatively fast #iterations) Acceptable accuracy for machine learning Relatively cheap in storage and computation( complexity in each iteration) Important for big data era mIST nmAPG 400 800 1000 Iteration (a)Objective function value v.S. iteration Nonlinear Optimization CCAI 2016 中国人工智能大会 Present(1990s-now) Revive and refine of existing techniques Support vectors Spiral ascent Support vectors Application driven Support Vector Machines ° Deep Learning 32 Feature(F)maps 36X36 32 F. maps 18x18 8 F maps 32 F maps 32 F maps ° Big data 14X14 Gray scale 18x18 7X7 8 F maps 200 nodes 40X40 Image 7X7 40X40 55 5x5 2x2 C MP Fully connected(F) Convolution(C) Max pooling(MP) Max out(MO) Dropout(D) CCAI 2016 Present(1990s-now) 中国人工智能大会 Advances in first-order methods Smooth - nonsmooth · Convex-> Nonconvex Deterministic - Stochastic One/Two blocks-> Multiple blocks Synchronous-> Asynchronous Convergence Convergence rate CCAI 2016 Present(1990s-now) 中国人工智能大会 Smooth -> nonsmooth Sparsity LoW-Ran kness Smooth · Nonsmooth Gradient Subgradient Proximal Operator 0∈b(xk) ACrlk) minx f(x)+E/2∥x y∥2 Linearization c(x)≤9(xMk(g(xh),x-xM片D/2∥x h∥72 CCAI 2016 Present(1990s-now) 中国人工智能大会 Convex-> Nonconvex Nonconvex Convex Nonincreasing Objective Global optimal Cluster points are kkt points Converges to KKt point (Kurdyka-Lojasiewicz Condition) (x) y7((x)-f(x1米)).(0,0(x)≥1 CCAI 2016 Present(1990s-now) 中国人工智能大会 Deterministic-> Stochastic Deterministic · Stochastic fClk), f(xlk) Stochastic Gradient/ADMM 1m∑=11nl(x)→f kr(x Variance Reduction Stochastic Matrix Computation Randomized svd 【实例截图】
【核心代码】
2016中国人工智能大会(CCAI 2016),机器学习的明天论坛,北京大学信息科学技术学院机器感知与智能教育部重点实验室教授林宙辰的演讲PPT。报道:http://geek.csdn.net/news/detail/97844
Nonlinear Optimization CCAI 2016 中国人工智能大会 Past (-1990s Major theories and techniques of optimization completed 1960s 1960s-1990s boom due to the invention of computers · Zeroth order methods Interpolation Methods Pattern Search Methods First order methods Coordinate descent Conjugate gradient (Stochastic) Gradient/Subgradient Descent Ellipsoid method Quasi-Newton Methods (Augmented)Lagrangian Method of multipliers Nonlinear Optimization CCAI 2016 中国人工智能大会 Past (-1990s Second order methods Newton's methods Sequential Quadratic Programming Interior point methods ·。 Nonlinear Optimization CCAI 2016 中国人工智能大会 Why first order methods? Converge relatively fast #iterations) Acceptable accuracy for machine learning Relatively cheap in storage and computation( complexity in each iteration) Important for big data era mIST nmAPG 400 800 1000 Iteration (a)Objective function value v.S. iteration Nonlinear Optimization CCAI 2016 中国人工智能大会 Present(1990s-now) Revive and refine of existing techniques Support vectors Spiral ascent Support vectors Application driven Support Vector Machines ° Deep Learning 32 Feature(F)maps 36X36 32 F. maps 18x18 8 F maps 32 F maps 32 F maps ° Big data 14X14 Gray scale 18x18 7X7 8 F maps 200 nodes 40X40 Image 7X7 40X40 55 5x5 2x2 C MP Fully connected(F) Convolution(C) Max pooling(MP) Max out(MO) Dropout(D) CCAI 2016 Present(1990s-now) 中国人工智能大会 Advances in first-order methods Smooth - nonsmooth · Convex-> Nonconvex Deterministic - Stochastic One/Two blocks-> Multiple blocks Synchronous-> Asynchronous Convergence Convergence rate CCAI 2016 Present(1990s-now) 中国人工智能大会 Smooth -> nonsmooth Sparsity LoW-Ran kness Smooth · Nonsmooth Gradient Subgradient Proximal Operator 0∈b(xk) ACrlk) minx f(x)+E/2∥x y∥2 Linearization c(x)≤9(xMk(g(xh),x-xM片D/2∥x h∥72 CCAI 2016 Present(1990s-now) 中国人工智能大会 Convex-> Nonconvex Nonconvex Convex Nonincreasing Objective Global optimal Cluster points are kkt points Converges to KKt point (Kurdyka-Lojasiewicz Condition) (x) y7((x)-f(x1米)).(0,0(x)≥1 CCAI 2016 Present(1990s-now) 中国人工智能大会 Deterministic-> Stochastic Deterministic · Stochastic fClk), f(xlk) Stochastic Gradient/ADMM 1m∑=11nl(x)→f kr(x Variance Reduction Stochastic Matrix Computation Randomized svd 【实例截图】
【核心代码】
标签:
好例子网口号:伸出你的我的手 — 分享!
相关软件
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论