在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → Neural Network Design (2nd Edition)

Neural Network Design (2nd Edition)

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:10.21M
  • 下载次数:2
  • 浏览次数:73
  • 发布时间:2020-07-01
  • 实例类别:一般编程问题
  • 发 布 人:robot666
  • 文件格式:.zip
  • 所需积分:2
 

实例介绍

【实例简介】
神经网络设计第二版pdf, Neural Network Design (2nd Edition)英语原版,2014年出版,Martin T. Hagan Oklahoma State University Stillwater, Oklahoma Howard B. Demuth University of Colorado Boulder, Colorado Mark Hudson Beale MHB Inc. Hayden, Idaho Orlando De Jesús Consultant Frisco, Texas
Copyright by Martin T Hagan and Howard B Demuth. All rights reserved. No part of the book may be reproduced stored in a retrieval system, or transcribed in any form or by any means electronic, mechanical, photocopying, recording or otherwise-without the prior permission of Hagan and Demuth MTH To Janet. Thomas Daniel. Mom and dad HBD To Hal, Katherine, Kimberly and Mary MHB To Leah. Valerie. Asia Drake. coi d Morgan ODJ To: Marisela, Maria victoria, Manuel, Mamd y papa Neural Network Design, 2nd Edition, eBook oVERHEADS and DEMONSTRATION PRoGraMs can be found at the following website hagan. okstate. edu/nnd.html A somewhat condensed paperback version of this text can be ordered from Amazon Contents reface Introduction Objectives History 1-2 Applications Biological Inspiration Further Reading Neuron model and Network architectures h Objectives Theory and Examples 2-2 Notation 2-2 Neuron model sing」le- Input Neuron 2-2 Transfer functions 2-3 Multiple-Input Neuron Network Architectures A Layer of Neurons 2-9 Multiple Layers of Neurons 2-10 Recurrent Networks 2-13 Summary of Results 2-16 Solved Problems 2-20 plogue 2-22 Exercises 2-23 An illustrative Example 3 z Objectives Theory and Examples 3-2 Problem statement 3-2 Perceptron 3-3 Two-Input case 3-4 Pattern Recognition example Hamming network 3-8 Feedforward layer 3-8 Recurrent Layer 3-9 Hopfield Network 3-12 Epilogue 3-15 Exercises 3-16 Perceptron Learning rule Objectives Theory and EXamples 4-2 Learning Rules 4-2 Perceptron Architecture 4-3 Single-Neuron Perceptro 4-5 Multiple-Neuron Perceptron 4-8 Perceptron Learning Rule 4-8 Test proble 4-9 Constructing Learning Rules 4-10 Unified Learning Rule 4-12 Training Multiple-Neuron Perceptrons 4-13 Proof of Convergence 4-15 Notation 4-15 Proof 4-16 Limitations 4-18 Summary of Results 4-20 Solved problems 4-21 Epilogue 4-33 urther Reading 4-34 Exercises 4-36 Signal and Weight Vector Spaces 5 Objectives Theory and Examples 5-2 Linear Vector Spaces Linear Independence Spanning a Space 5-5 Inner product Norm 5-7 Orthogonality 5-7 Gram-Schmidt Orthogonalization 5-8 Vector Expansions Reciprocal Basis vectors 5-10 Summary of Results 5-14 Solved Problems 5-17 Epilogue 5-26 Further Reading 5-27 Exercises 5-28 6 Linear transformations for Neural networks Objectives Theory and Examples Linear Transformations 6-2 Matrix Representations Change of Basis 6-6 Eigenvalues and Eigenvectors 6-10 Diagonalization 6-13 Summary of Results 6-15 Solved problems 6-17 Epilogue 6-28 Further Reading 6-29 xercises 6-30 Supervised Hebbian Learning 7 Objectives 7-1 Theory and Examples 7-2 inear associato 7-3 The Hebb rule 7-4 Performance Analysis 7-5 Pseudoinverse rule Application 7-10 Variations of hebbian le 7-12 su ummary of results y 17-4 Solved Problems Epilogue 7-29 Further readi 7-30 Exercises 7-31 8 Performance Surfaces and Optimum Points Objectives Theory and Examples 8-2 Taylor Series 8-2 Vector case 8-4 Directional derivati Minima Necessary Conditions for Optimality First-Order conditions 8-10 Second-Order Conditions 8-11 Quadratic Functions 8-12 Eigensystem of the Hessian 8-13 Summary of results 8-20 Solved problems 8-22 plogue 8-34 Further Reading 8-35 Exercises 8-36 LL Performance Optimization 9 Objectives Theory and Examples 9-2 Steepest Descent 9-2 Stable Learning Rates 9-6 Minimizing along a Line 9-8 Newton's method 9-10 Conjugate Gradient 9-15 Summary of Results 9-21 Solved problems 9-23 Epilogue Further Reading 9-38 Exercises 9-39 10 Widrow-Hoff Learning Objectives 10-1 Theory and EXamples 102 ADALINE Network 10-2 Single ADALINE 10-3 Mean Square Error 10-4 LMS Algorithm 10-7 Analysis of Convergence 10-9 Adaptive Filtering 10-13 Adaptive Noise Cancellation 10-15 Echo Cancellation 10-21 Summary of Results 10-22 Solved Problems 10-24 Epilogue 10-40 Further Reading 10-41 Exercises 10-42 Backpropagation 11 Objectives 11-1 Theory and Examples Multilayer Perceptrons 11-2 Pattern Classification 11-3 Function Approximation 11-4 The Backpropagation algorithm 11-7 Performance Index 11-8 Chain Rule Backpropagating the Sensitivities 11-11 ary 11-13 Example 11-14 Batch vS Incremental Training 11-17 Using Backpropagation 11-18 Choice of Network architecture 11-18 Convergence 11-20 Generalization 1122 Summary of Results 11-25 Solved Problems 11-27 Epilogue 11-41 Further Reading 11-42 Exercises 11-44 12 Variations on Backpropagation Objectives 12-1 Theory and Examples 122 Drawbacks of Backpropagation 12-3 erformance Surface EXample 12-3 Convergence Example 12-7 Heuristic Modifications of Backpropagation 129 Momentum 12-9 Variable Learning Rate 12-12 Numerical Optimization Techniques 12-14 Conjugate gradient 12-14 Levenberg-Marquardt algorithm 12-19 Summary of Results 12-28 Solved Problems 12-32 Epilogue 12-46 Further Reading 12-47 Exercises 12-50 Generalization 13 Objectives 13-1 Theory and Examples 13-2 Problem statement 13-2 Methods for Improving Generalization 13-5 Estimating generalization error 13-6 Early Stopping 13-6 Regularizati 13-8 Bayesian Analysis 13-10 Bayesian Regularization 13-12 Relationship Between Early Stopping and Regularizat 13-19 Summary of Results 13-29 Solved Problems 13-32 13-44 Further Reading 13-45 Exercises 13-47 14 Dynamic Networks Objectives 14-1 Theory and examples 14-2 Layered Digital Dynamic Networks 14-3 Example dynamic Networks 14-5 Principles of Dynamic Learning 14-8 Dynamic Backpropagation 14-12 Preliminary definitions 14-12 Real Time Recurrent Learning 14-12 Backpropagation-Through-Time 14-22 Summary and comments on Dynamic T raining 14-30 Summary of Results 14-34 Solved Problems 14-37 Epilogue 14-46 Further Reading 14-47 Exercises 14-48 【实例截图】
【核心代码】

标签:

实例下载地址

Neural Network Design (2nd Edition)

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警