实例介绍
Power System Stability And Control--Kundur
Contents FOREWORD XIX PREFACE XXI PART I GENERAL BACKGROUND 1 GENERAL CHARACTERISTICS OF MODERN POWER SYSTEMS 1. 1 Evolution of electric power systems 1.2 Structure of the power system 3358 1.3 Power system control 1. 4 Design and operating criteria for stability References 16 2 INTRODUCTION TO THE POWER SYSTEM STABILITY PROBLEM 17 2.1 Basic concepts and definitions 2.1.1 Rotor angle stability 2.1.2 Voltage stability and voltage collapse 27 2.1.3 Mid-term and long-term stability 2.2 Classification of stability 2.3 Historical review of stability problems 37 References 40 Conten PART II EQUIPMENT CHARACTERISTICS AND MODELLING 3 SYNCHRONOUS MACHINE THEORY AND MODELLING 45 3. 1 Physical description 3. 1.1 Armature and field structure 46 3.1.2 Machines with multiple pole pairs 3.1.3 MMf Weⅴ eforms 49 3. 1. 4 Direct and quadrature axes 53 3.2 Mathematical description of a synchronous machine 3.2.1 Review of magnetic circuit equations 56 3.2.2 Basic equations of a synchronous machine 3. 3 The dg0 transformation 3.4 Per unit representation 75 3.4.1 Per unit system for the stator quantities 3.4.2 Per unit stator voltage equations 76 3.4.3 Per unit rotor voltage equations 3.4.4 Stator flux linkage equations 3.4.5 Rotor flux linkage equations 78 3. 4.6 Per unit system for the rotor 79 3.4.7 Per unit power and torque 83 3. 4.8 Alternative per unft systems and transformations 83 3.4.9 Summary of per unit equations 84 3.5 Equivalent circuits for direct and quadrature axes 88 3.6 Steady-state analysis 93 6. 1 Voltage, current, and flux linkage relationships 93 3.6.2 Phasor representation 95 3.6.3 Rotor angle 98 3.6. 4 Steady-state equivalent circuit 99 3.6.5 Procedure for computing steady-state values 3.7 Electrical transient performance characteristics 3.7.1 Short-circuit current in a simple rl circuit 105 3.7.2 Three-phase short-circuit at the terminals of a synchronous machine 3.7.3 Elimination of dc offset in short-circuit current 108 8 Magnetic saturation 3.8. 1 Open-circuit and short-circuit characteristics 8.2 Representation of saturation in stability studies 3.8.3 Improved modelling of saturation 117 3.9 Equations of motion 128 Contents 3.9.1 Review of mechanics of motion 128 3.9.2 Swing equation 128 3.9.3 Mechanical starting time 132 3.9.4 Calculation of inertia constant 132 3.9 Representation in system studies 135 References 136 4 SYNCHRONOUS MACHINE PARAMETERS 139 Operational parameters 139 4.2 Standard parameters 144 4.3 Frequency-response characteristics 159 4.4 Determination of synchronous machine parameters 61 References 166 5 SYNCHRONOUS MACHINE REPRESENTATION IN STABILITY STUDIES 169 Simplifications essential for large-scale studies 169 5.1.1 Neglect of stator py terms 170 5.1.2 Neglecting the effect of speed variations on stator voltages 174 5. 2 Simplified model with amortisseur neglected 179 5.3 Constant flux linkage model 184 5.3. 1 Classical model 184 2 Constant flux linkage model including the effects of subtransient circuits 188 5.3.3 Summary of simple models for different time frames 190 6. 4 Reactive capability limits 19 5. 4.1 Reactive capability curves 191 5. 4.2 V curves and compounding curves 196 References 198 6 AC TRANSMISSION 199 T ransmission lines 200 6.1.1 Electrical characteristics 200 6.1.2 Performance equations 201 6. 1. 3 Natural or surge impedance loading 205 6.1.4 Equivalent circuit of a transmission line 206 6. 1.5 Typical parameters 209 Contents 6.1.6 Performance requirements of power transmission lines 211 6.1.7 Voltage and current profile under no-load 6.1.8 Voltage-power characteristics 216 6. 1. 9 Power transfer and stability considerations 221 6.1. 10 Effect of line loss on v-P and o-P characteristics 225 6.1.11 Thermal limits 226 6.1. 12 Loadability characteristics 228 6.2 Transformers 231 6.2. 1 Representation of two-winding transformers 232 6.2.2 Representation of three-winding transformers 240 6.2.3 Phase-shifting transformers 245 6.3 Transfer of power between active sources 250 6.4 Power-flow analysis 6. 4.1 Network equations 257 6.4.2 Gauss-Seidel method 6.4.3 Newton-Raphson(N-R) method 260 6.4.4 Fast decoupled load-flow(FDLF) methods 264 6.4.5 Comparison of the power-flow solution methods 267 6.4.6 Sparsity-oriented triangular factorization 268 6.4.7 Network reduction 268 References 269 I POWER SYSTEM LOADS 271 7.1 Basic load-modelling concepts 7.1.1 Static load models 272 7.1.2 Dynamic load models 274 7.2 Modelling of induction motors 279 7.2.1 Equations of an induction machin 279 7.2.2 Steady-state characteristics 287 7.2.3 Alternative rotor constructions 293 7.2.4 Representation of saturation 296 7.2.5 Per unit representation 297 7.2.6 Representation in stability studies 300 7. 3 Synchronous motor model 306 7.4 Acquisition of load-model parameters 306 7.4.1 Measurement-based approach 306 7.4.2 Component-based approach 308 7.4.3 Sample load characteristics 310 References 312 Contents X 8 EXCITATION SYSTEMS 315 8. 1 Excitation system requirements 315 8.2 Elements of an excitation system 8.3 Types of excitation systems 8.3.1 DC excitation systems 8.3.2 AC excitation systems 320 8.3.3 Static excitation systems 323 8.3.4 Recent developments and future trends 326 8.4 Dynamic performance measures 327 8.4.1 Large-signal performance measures 327 8.4.2 Small-signal performance measures 330 8.5 Control and protective functions 333 8.5.1 AC and dC regulators 333 8.5.2 Excitation system stabilizing circuits 334 8.5.3 Power system stabilizer(Pss) 335 8.5.4 Load compensation 335 8.5.5 Underexcitation limiter 337 8.5.6 Overexcitation limiter 337 8.5.7 Volts-per-hertz limiter and protection 339 8.5.8 Field-shorting circuits Modelling of excitation systems 8.6. 1 Per unit system 342 8.6.2 Modelling of excitation system components 347 8.6.3 Modelling of complete excitation system 362 8.6.4 Field testing for model development and verification 372 References 373 9 PRIME MOVERS AND ENERGY SUPPLY SYSTEMS 377 9. 1 Hydraulic turbines and governing systems 77 Hydraulic turbine transfer function 379 Nonlinear turbine model assuming inelastic water column 387 Governors for hydraulic turbines 394 9. 1. 4 Detailed hydraulic system model 404 9.1.5 Guidelines for modelling hydraulic turbines 417 9.2 Steam turbines and governing systems 418 9.2.1 Modelling of steam turbines 422 9.2.2 Steam turbine controls 432 9.2.3 Steam turbine off-frequency capability 444 X Contents 9.3 Thermal energy systems 449 9.3 Fossil-fuelled energy systems 449 9.3.2 Nuclear-based energy systems 455 9.3.3 Modelling of thermal energy systems 459 R eferences 460 10 HIGH-VOLTAGE DIRECT-CURRENT TRANSMISSION 463 10.1 HVDC system configurations and components 464 10.1.1 Classification of hvdc links 464 10.1.2 Components of hvDC transmission system 467 10.2 Converter theory and performance equations 468 10.2.1 Valve characteristics 469 10.2.2 Converter circuits 470 10.2.3 Converter transformer rating 492 10.2. 4 Multiple-bridge converters 493 10.3 Abnormal operation 498 10.3.1 Arc-back(backfire 498 10.3.2 Commutation failure 499 10. 4 Control of HvDC systems 500 10.4.1 Basic principles of control 500 10.4.2 Control implementation 514 10.4.3 Converter firing-control systems 516 10.4.4 Valve blocking and bypassing 520 10.4.5 Starting, stopping, and power-flow reversal 521 10.4.6 Controls for enhancement of ac system performance 523 10.5 Harmonics and filters 24 10.5.1 AC side harmonics 524 10.5.2 DC side harmonics 527 10.6 Influence of ac system strength on ac/dc system interaction 528 10.6.1 Short-circuit ratio 528 10.6.2 Reactive power and ac system strength 529 10.6. 3 Problems with low ESCR systems 530 10.6.4 Solutions to problems associated with weak systems 10.6.5 Effective inertia constant 532 10.6.6 Forced commutation 532 10.7 Responses to dc and ac system faults 533 10.7. 1 DC line faults 534 10.7.2 Converter faults 535 10.73 AC system faults 535 Contents 0.8 Multiterminal HVDC systems 538 10.8.1 MTDC network configurations 539 10.8.2 Control of MTDC systems 540 10.9 Modelling of HVDC systems 544 10.9.1 Representation for power-flow solution 544 10.9.2 Per unit system for dc quantities 564 10.9.3 Representation for stability studies 566 References 577 11 CONTROL OF ACTIVE POWER AND REACTIVE POWER 581 11. 1 Activc powcr and frequency control 581 1.1.1 Fundamentals of speed governing 582 11.1.2 Control of generating unit power output 592 1.1.3 Composite regulating characteristic of power systems 595 11. 1.4 Response rates of turbine-governing systems 598 5 Fundamentals of automatic generation contro 601 11.1.6 Implementation of AGO 617 11.1.7 Underfrequency load shedding 623 11.2 Reactive power and voltage control 627 11.2.1 Production and absorption of reactive power 627 1.2.2 Methods of voltage control 628 11.2.3 Shunt reactors 629 11.2.4 Shunt capacitors 631 11. 2.5 Series capacitors 633 11.2.6 Synchronous condensers 638 11.2. 7 Static var systems 63 11. 2.8 Principles of transmission system compensation 654 11.2.9 Modelling of reactive compensating devices 672 11. 2. 10 Application of tap-changing transformers to transmISSion systems 678 11.2.11 Distribution system voltage regulation 679 11. 2. 12 Modelling of transformer ULTC control systems 684 11.3 Power-flow analysis procedures 687 11.3. 1 Prefault power flows 687 11.3.2 Postfault power flows 8 References 691 Contents PART I SYSTEM STABILITY: physical aspects, analysis, and improvement 12 SMALL-SIGNAL STABILITY 699 2.1 Fundamental concepts of stability of dynamic systems 700 12.1.1 State-space representation 700 12.1.2 Stability of a dynamic system 702 12.1.3 Linearization 703 12. 1.4 Analysis of stability 706 12.2 Eigenproperties of the state matrix 707 12.2.1 Eigenvalues 707 12.2.2 Eigenvectors 707 12.2. 3 Modal matrices 708 12.2.4 Free motion of a dynamic system 709 12.2.5 Mode shape, sensitivity, and participation factor 714 12.2.6 Controllability and observability 716 12.2.7 The concept of complex frequency 717 12.2.8 Relationship between eigenproperties and transfer functions 719 12.2.9 Computation of eigenvalues 12.3 Small-signal stability of a single-machine infinite bus system 727 12,3. 1 Generator represented by the classical model 12.3.2 Effects of synchronous machine field circuit dynamics 737 12. 4 Effects of excitation system 758 12.5 Power system stabilizer 766 12.6 System state matrix with amortisseur 782 12.7 Small-signal stability of multimachine systems 792 12.8 Special techniques for analysis of very large systems 799 12.9 Characteristics of small-signal stability problems 817 References 822 13 TRANSIENT STABILITY 827 13.1 An elementary view of transient stability 827 13.2 Numerical integration methods 836 13.2.1 Euler method 836 13.2.2 Modified euler method 838 13.2.3 Runge-Kutta(R-K) methods 838 13.2.4 Numerical stability of explicit integration methods 841 13.2.5 Implicit integration methods 842 【实例截图】
【核心代码】
标签:
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论