实例介绍
快速搭建垃圾分类模型: 使用inception快速搭建的图像分类模型,目前支持1000类识别。从图像中识别出类别后,再通过textcnn模型对垃圾类别进行映射,最终输出垃圾的类别。 注:垃圾类别是以上海分类标准。
【实例截图】
【核心代码】
rafuse_recognize
└── rafuse_recognize
├── __pycache__
│ └── classify_image.cpython-35.pyc
├── classify_image.py
├── data
│ ├── imagenet_2012_challenge_label_chinese_map.pbtxt
│ ├── imagenet_2012_challenge_label_map_proto.pbtxt
│ ├── imagenet_synset_to_human_label_map.txt
│ ├── train_data.txt
│ ├── valid_data.txt
│ └── word2vec.bin
├── img
│ ├── 1.png
│ └── 2.png
├── rafuse.py
├── readme.md
├── runs
│ └── checkpoints
│ ├── checkpoint
│ ├── model-2000.data-00000-of-00001
│ ├── model-2000.index
│ └── model-2000.meta
└── textcnn
├── README.md
├── __pycache__
│ ├── data_input_helper.cpython-35.pyc
│ ├── predict.cpython-35.pyc
│ └── text_cnn.cpython-35.pyc
├── data_input_helper.py
├── eval.py
├── predict.py
├── text_cnn.py
└── train.py
8 directories, 25 files
标签:
相关软件
网友评论
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
支持(0) 盖楼(回复)