实例介绍
Data Science from Scratch First Principles with Python 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
Data science from scratch Joel grus Beng. Cambridge. Farnham·Kn· Sebastopol, Tokyo OREILLY° Data Science from scratch b y Joel Grus Copyright C 2015 O Reilly Media. All rights reserved Printed in the United States of America Published by O reilly Media, InC, 1005 Gravenstein Highway North, Sebastopol, CA 95472 OReilly books may be purchased for educational, business, or sales promotional use. Online editions are alsoavailableformosttitles(http://safaribooksonline.com).Formoreinformationcontactourcorporate institutionalsalesdepartment800-998-9938orcorporate@oreilly.com Editor: Marie beaugureau Indexer: Ellen Troutman-Zaig Production Editor: Melanie Yarbrough Interior Designer: David Futato Copyeditor: Nan Reinhardt Cover Designer: Karen Montgomery Proofreader: Eileen Cohen Illustrator: rebecca demarest april 2015 First edition Revision History for the first Edition 2015-04-10 First release Seehttp://oreilly.com/catalog/errata.csp?isbn=9781491901427forreleasedetails The OReilly logo is a registered trademark of O reilly Media, Inc. Data Science from Scratch, the cover image of a Rock Ptarmigan, and related trade dress are trademarks of o reilly Media, Inc While the publisher and the author have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights 978-1-491-90142-7 Table of contents Preface Introduction The ascendance of data What is data science? Motivating Hypothetical: DataSciencester Finding Key connectors Data Scientists You may Know 6 Salaries and Experience 8 Paid Accounts 11 Topics of Interest Onward 2. A Crash Course in Python. ,15 The basics 15 Getting Python 15 The Zen of Python 16 Whitespace Formatting 16 Arithmetic 18 Functions 18 Strings 19 Exceptions Lists 20 Tupl ples 21 Dictionaries 21 Sets 24 Control flow 5 Truthiness The not-So-Basics 26 Sortin g 27 List Comprehensions 27 Generators and iterators 28 Randomness 29 Regular Expressions 30 Object-Oriented Programming 30 Functional tools 31 enumerate 32 zip and argument Unpacking 33 args and kwargs 34 Welcome to data Sciencester 35 For Further Exploration 35 3. Visualizing Data 37 matplotlib 7 Bar charts 39 Line charts tterplots 44 For Further Exploration 47 4. Linear Algebra 49 Vectors 49 53 For Further Exploration 55 5. Statistics...................................57 Describing a Single Set of Data Central tendencies 9 Dispersion 61 Correlation 62 Simpsons paradox Some other correlational caveats 6 Correlation and Causation 67 For Further Exploration 68 6. Probabilit 鲁·鲁。 鲁鲁 Dependence and Independence Conditional Probability 70 Bayes Theorem 72 Random variables iv Table of Contents Continuous distributions The Normal Distribution The Central Limit theorem 78 For Further Exploration 80 7. Hypothesis and Inference 81 Statistical Hypothesis Testing 81 Example: Flipping a Coin 81 Confidence Intervals P-hacking 86 Example: Running an a/B Test 87 Bayesian Inference 88 For Further Exploration 92 8. Gradient descent ,93 The Idea behind gradient descent 93 Estimating the gradient 94 Using the gradient 97 Choosing the right Step size 97 Putting it all together 8 Stochastic Gradient Descent For Further Exploration 9. Getting Data........................ 103 stdin and stdout 103 Reading files 105 The basics of text files 105 Delimited files 106 Scraping the Web 108 HTML and the Parsing ereo 108 Example: O Reilly books about Data 110 Using APIs 114 jSON (and XML 114 Using an Unauthenticated API 115 Finding aPis 116 Example: Using the twitter aPis 117 Getting Credentials 117 For Further Exploration 120 10. Working with Data............................ 121 Exploring Your Data 121 Exploring One-Dimensional Data 121 Table of contents Two Dimensions 123 Many dimensions 125 Cleaning and Munging 127 Manipulating data 129 Rescaling 132 Dimensionality reduction 134 For Further Exploration 139 11. Machine Learning Modeling 141 What Is Machine learning? 142 Overfitting and Underfitting 142 Correctness 145 The Bias-Variance Trade-off 147 Feature Extraction and Selection 148 For Further Exploration 150 12. k-Nearest Neighbors. 151 The model 151 Example: Favorite Languages 153 The Curse of dimensionality 156 For Further Exploration 163 3. Naive bayes................. 165 A Really dumb Spam Filter 165 A More Sophisticated Spam Filter 166 Implementation 168 Testing Our Model 169 For Further Exploration 172 14. Simple Linear Regression. 173 The model 173 Using gradient Descent 176 Maximum Likelihood estimation 177 For Further exploration 177 15. Multiple Regression.,…,,…,,,,,,,,,…,,…,179 The model Further Assumptions of the Least Squares model 180 Fitting the Model 181 Interpreting the Model 182 Goodness of fit 183 Table of contents Digression: The Bootstrap 183 Standard Errors of Regression Coefficients 184 Regularization 186 For Further Exploration 188 16. Logistic Regression. ,189 The Problem 189 The Logistic Function 192 Applying the Model 194 Goodness of fit 195 Support vector machines 196 For Further investigation 200 17. Decision trees ·鲁 ,201 What Is a Decision Tree 201 Entropy 203 The Entropy of a Partition 205 Creating a Decision Tree 206 Putting It All Together 208 Random forests 211 For Further Exploration 212 18. Neural Networks 213 Perceptrons 213 Feed-Forward Neural Networks 215 Backpropagation 218 Example: Defeating a CaPtcha 219 For Further Exploration 224 19. Clustering 225 The Idea 225 e vio 226 Example: meetups 227 Choosing k 230 Example: Clustering Colors 231 Bottom-up Hierarchical Clustering 233 For Further Exploration 238 20. Natural Language Processing. ,239 Word cloud 239 n-gram Models 241 Grammars 244 Table of contents|ⅷi An Aside: Gibbs Sampling 246 Topic Modeling 247 For Further Exploration 253 21. Network Analysis. ,,255 Betweenness Centrality 255 Eigenvector Centrality 260 Matrix Multiplication 260 Centralia 262 Directed graphs and PageRank 264 For Further exploration 266 22. Recommender systems 267 Manual curation 268 Recommending what's popular 268 User-Based Collaborative Filtering 269 Item-Based Collaborative Filtering 272 For Further exploration 274 23. Databases and SQL ●鲁 鲁鲁。鲁鲁。 ,275 CREATE TABLE and INsert 275 UPDATE 277 DELETE 278 SELECT 278 GROUP BY 280 ORDER BY 282 JOIN 283 Subqueries 285 Indexes 285 Query optimization 286 ISQL 287 For Further Exploration 287 24. Map Reduce.…………… ,,,289 Example: Word Count 289 Why Map Reduce? 291 Map Reduce more generally 292 Example: Analyzing Status Updates 293 Example: Matrix Multiplication 294 An aside: Combiners 296 For Further Exploration 296 ⅶ ii Table of Contents 【实例截图】
【核心代码】
标签:
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论