在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → Real-World Machine Learning 无水印pdf

Real-World Machine Learning 无水印pdf

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:14.63M
  • 下载次数:2
  • 浏览次数:199
  • 发布时间:2020-06-03
  • 实例类别:一般编程问题
  • 发 布 人:robot666
  • 文件格式:.pdf
  • 所需积分:2
 

实例介绍

【实例简介】
Real-World Machine Learning 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
Real-World Machine learning HENRIK BRINK JOSEPH W. RICHARDS MARK FETHEROLF MANNING SHELTER ISLAND For online information and ordering of this and other Manning books, please visit www.manning.com.Thepublisheroffersdiscountsonthisbookwhenorderedinquantity For more information, please contact Special sales department Manning publications co 20 Baldwin road PO BoX 761 Shelter island. ny11964 Email:orders@manning.com @2017 by manning publications Co. All rights reserved no part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps @o Recognizing the importance of preserving what has been written, it is Mannings policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15 percent recycled and processed without the use of elemental chlorine Manning publications co Development editor: Susanna Kline 20 Baldwin road Technical development editor: Al Scherer POBoⅹ761 Review editors: Olivia booth. Ozren harlovic Shelter island. ny11964 Project editor: Kevin Sullivan Copyeditor: Sharon Wilkey Proofreader: Katie Tennant Technical proofreader: Valentin Crettaz Typesetter: Dennis Dalinnik Cover designer Marija Tudor ISBN:9781617291920 Printed in the united states of america 12345678910-EBM-212019181716 brief contents PART 1 THE MACHINE-LEARNING WORKFLOW 1 What is machine learning? 3 Real-world data 27 3 Modeling and prediction 52 4 Model evaluation and optimization 77 5 Basic feature engineering 106 PART 2 PRACTICAL APPLICATION 127 6 Example: Nyc taxi data 129 7 Advanced feature engineering 146 8 Advanced nlp example: movie review sentiment 172 Scaling machine-learning workflows 196 10 Example: digital display advertising 214 contents preface xu acknowledgments xvii this book about the authors xx about the cover illustration xxii PART 1 THE MACHINE-LEARNING WORKFLOW What is machine learning? 3 1.1 Understanding how machines learn 4 1.2 Using data to make decisions 7 Traditional approaches 8 The machine-leaning approach 11 Five advantages to machine learning 16 Challenges 16 1. 8 Following the Ml workflow: from data to deployment 17 Data collection and preparation 18 Learning a model from data 19. Evaluating model performance 20 Optimizing model performance 21 CoNTENTS 1. Boosting model performance with advanced techniques 22 Data preprocessing and feature engineering 22 Improving models continually with online methods 24 Scaling models with data volume and velocity 25 1.5 Summary 25 1.6 Terms from this chapter 25 Real-world data 27 2.1 Getting started: data collection 28 Which features should be included? 30. How can we obtain ground truth for the target variable? 32 How much training data is required? 33 Is the training set representative enough? 35 Preprocessing the data for modeling 36 Categorical features 36. Dealing with missing data 38 Simple feature engineering 40. Data normalization 42 2.3 Using data visualization 43 Mosaic plots44· Box plots46· Density plots8 Scatter plots 50 2.4 Summary 50 2.5 Terms from this chapter 51 Modeling and prediction 52 8.1 Basic machine-learning modeling 58 Finding the relationship between input and target 53 The purpose of finding a good model 55. Types of modeling methods 56 Supervised versus unsupervised learning 58 8.2 Classification: predicting into buckets 59 Building a classifier and making predictions 61 Classifying complex, nonlinear data 64 Classifying with multiple classes 66 3.3 Regression: predicting numerical values 68 Building a regressor and making predictions 69 Performing regression on complex, nonlinear data 73 3.4 Summary 74 3.5 Terms from this chapter 75 CONTENTS 4 Model evaluation and optimization 77 4.1 Model generalization: assessing predictive accuracy for new d 78 The problem: overfitting and model optimism 79 a The solution cross-validation 82 Some things to look out for when using cross-validation 86 4.2 Evaluation of classification models 87 Class-wise accuracy and the confusion matrix 89 Accuracy trade-offs and RoC curves 90 Multiclass classification 93 4.3 Evaluation of regression models 96 Using simple regression performance metrics 97 Examining residuals gg 4. Model optimization through parameter tuning 100 Ml algorithms and their tuning parameters 100 Grid search 101 4.5 Summary 104 4.6 Terms from this chapter 105 Basic feature engineering 106 5.1 Motivation: why is feature engineering useful? 107 What is feature engineering? 107. Five reasons to use feature engineering 107. Feature engineering and domain expertise 109 5.2 Basic feature-engineering processes 110 Example: event recommendation 110. Handling date and time features 112. Working with simple text features 114 5. 3 Feature selection 116 Forward selection and backward elimination 119- Feature selection for data exploration 121" Real-world feature le123 5. Summary 125 5.5 Terms from this chapter 126 【实例截图】
【核心代码】

标签:

实例下载地址

Real-World Machine Learning 无水印pdf

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警