实例介绍
【实例截图】
【核心代码】
Contents Preface to the Instructor ix Preface to the Student xiii Acknowledgments xv Chapter 1 Vector Spaces 1 Complex Numbers .......................... 2 Definition of Vector Space ...................... 4 Properties of Vector Spaces ..................... 11 Subspaces ............................... 13 Sums and Direct Sums ........................ 14 Exercises ................................ 19 Chapter 2 Finite-Dimensional Vector Spaces 21 Span and Linear Independence ................... 22 Bases .................................. 27 Dimension ............................... 31 Exercises ................................ 35 Chapter 3 Linear Maps 37 Definitions and Examples ...................... 38 Null Spaces and Ranges ....................... 41 The Matrix of a Linear Map ..................... 48 Invertibility .............................. 53 Exercises ................................ 59 v vi Contents Chapter 4 Polynomials 63 Degree ................................. 64 Complex Coefficients ........................ 67 Real Coefficients ........................... 69 Exercises ................................ 73 Chapter 5 Eigenvalues and Eigenvectors 75 Invariant Subspaces ......................... 76 Polynomials Applied to Operators ................. 80 Upper-Triangular Matrices ..................... 81 Diagonal Matrices ........................... 87 Invariant Subspaces on Real Vector Spaces ........... 91 Exercises ................................ 94 Chapter 6 Inner-Product Spaces 97 Inner Products ............................. 98 Norms ................................. 102 Orthonormal Bases .......................... 106 Orthogonal Projections and Minimization Problems ...... 111 Linear Functionals and Adjoints .................. 117 Exercises ................................ 122 Chapter 7 Operators on Inner-Product Spaces 127 Self-Adjoint and Normal Operators ................ 128 The Spectral Theorem ........................ 132 Normal Operators on Real Inner-Product Spaces ........ 138 Positive Operators .......................... 144 Isometries ............................... 147 Polar and Singular-Value Decompositions ............ 152 Exercises ................................ 158 Chapter 8 Operators on Complex Vector Spaces 163 Generalized Eigenvectors ...................... 164 The Characteristic Polynomial ................... 168 Decomposition of an Operator ................... 173 Contents vii Square Roots .............................. 177 The Minimal Polynomial ....................... 179 Jordan Form .............................. 183 Exercises ................................ 188 Chapter 9 Operators on Real Vector Spaces 193 Eigenvalues of Square Matrices ................... 194 Block Upper-Triangular Matrices .................. 195 The Characteristic Polynomial ................... 198 Exercises ................................ 210 Chapter 10 Trace and Determinant 213 Change of Basis ............................ 214 Trace .................................. 216 Determinant of an Operator .................... 222 Determinant of a Matrix ....................... 225 Volume ................................. 236 Exercises ................................ 244 Symbol Index 247 Index 249
标签: 线性代数
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论