实例介绍
【实例简介】
【实例截图】
【核心代码】
Table of Contents Using This Manual .................................................................................................................................... xxix 1.The Contents of This Manual ............................................................................................................ xxix 2.The Contents of the Fluent Manuals .................................................................................................. xxx 3. Typographical Conventions ............................................................................................................ xxxii 4. Mathematical Conventions ............................................................................................................ xxxiv 5.Technical Support ........................................................................................................................... xxxv 1. Basic Fluid Flow ....................................................................................................................................... 1 1.1. Overview of Physical Models in ANSYS Fluent .................................................................................... 1 1.2. Continuity and Momentum Equations ............................................................................................... 2 1.2.1. The Mass Conservation Equation .............................................................................................. 2 1.2.2. Momentum Conservation Equations ........................................................................................ 3 1.3. User-Defined Scalar (UDS) Transport Equations .................................................................................. 4 1.3.1. Single Phase Flow .................................................................................................................... 4 1.3.2. Multiphase Flow ....................................................................................................................... 5 1.4. Periodic Flows .................................................................................................................................. 5 1.4.1. Overview ................................................................................................................................. 6 1.4.2. Limitations ............................................................................................................................... 7 1.4.3. Physics of Periodic Flows .......................................................................................................... 7 1.4.3.1. Definition of the Periodic Velocity .................................................................................... 7 1.4.3.2. Definition of the Streamwise-Periodic Pressure ................................................................ 7 1.5. Swirling and Rotating Flows .............................................................................................................. 8 1.5.1. Overview of Swirling and Rotating Flows .................................................................................. 9 1.5.1.1. Axisymmetric Flows with Swirl or Rotation ....................................................................... 9 1.5.1.1.1. Momentum Conservation Equation for Swirl Velocity ............................................. 10 1.5.1.2.Three-Dimensional Swirling Flows .................................................................................. 10 1.5.1.3. Flows Requiring a Moving Reference Frame ................................................................... 10 1.5.2. Physics of Swirling and Rotating Flows .................................................................................... 10 1.6. Compressible Flows ........................................................................................................................ 11 1.6.1.When to Use the Compressible Flow Model ............................................................................ 13 1.6.2. Physics of Compressible Flows ................................................................................................ 13 1.6.2.1. Basic Equations for Compressible Flows ......................................................................... 13 1.6.2.2.The Compressible Form of the Gas Law .......................................................................... 14 1.7. Inviscid Flows ................................................................................................................................. 14 1.7.1. Euler Equations ...................................................................................................................... 14 1.7.1.1.The Mass Conservation Equation .................................................................................... 15 1.7.1.2. Momentum Conservation Equations .............................................................................. 15 1.7.1.3. Energy Conservation Equation ....................................................................................... 15 2. Flows with Moving Reference Frames ................................................................................................... 17 2.1. Introduction ................................................................................................................................... 17 2.2. Flow in a Moving Reference Frame .................................................................................................. 18 2.2.1. Equations for a Moving Reference Frame ................................................................................ 19 2.2.1.1. Relative Velocity Formulation ......................................................................................... 20 2.2.1.2. Absolute Velocity Formulation ....................................................................................... 21 2.2.1.3. Relative Specification of the Reference Frame Motion ..................................................... 21 2.3. Flow in Multiple Reference Frames .................................................................................................. 22 2.3.1.The Multiple Reference Frame Model ...................................................................................... 22 2.3.1.1. Overview ....................................................................................................................... 22 2.3.1.2. Examples ....................................................................................................................... 23 2.3.1.3. The MRF Interface Formulation ...................................................................................... 24 2.3.1.3.1. Interface Treatment: Relative Velocity Formulation ................................................. 24 iii Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. 2.3.1.3.2. Interface Treatment: Absolute Velocity Formulation ............................................... 25 2.3.2. The Mixing Plane Model ......................................................................................................... 25 2.3.2.1. Overview ....................................................................................................................... 26 2.3.2.2. Rotor and Stator Domains .............................................................................................. 26 2.3.2.3. The Mixing Plane Concept ............................................................................................. 27 2.3.2.4. Choosing an Averaging Method ..................................................................................... 28 2.3.2.4.1. Area Averaging ..................................................................................................... 28 2.3.2.4.2. Mass Averaging .................................................................................................... 28 2.3.2.4.3. Mixed-Out Averaging ............................................................................................ 29 2.3.2.5. Mixing Plane Algorithm of ANSYS Fluent ........................................................................ 29 2.3.2.6. Mass Conservation ........................................................................................................ 30 2.3.2.7. Swirl Conservation ......................................................................................................... 30 2.3.2.8. Total Enthalpy Conservation .......................................................................................... 31 3. Flows Using Sliding and Dynamic Meshes ............................................................................................ 33 3.1. Introduction ................................................................................................................................... 33 3.2. Dynamic Mesh Theory .................................................................................................................... 34 3.2.1. Conservation Equations ......................................................................................................... 35 3.2.2. Six DOF (6DOF) Solver Theory ................................................................................................. 36 3.3. Sliding Mesh Theory ....................................................................................................................... 37 4.Turbulence ............................................................................................................................................. 39 4.1. Underlying Principles of Turbulence Modeling ................................................................................. 39 4.1.1. Reynolds (Ensemble) Averaging .............................................................................................. 39 4.1.2. Filtered Navier-Stokes Equations ............................................................................................. 40 4.1.3. Hybrid RANS-LES Formulations ............................................................................................... 41 4.1.4. Boussinesq Approach vs. Reynolds Stress Transport Models ..................................................... 41 4.2. Spalart-Allmaras Model ................................................................................................................... 42 4.2.1. Overview ............................................................................................................................... 42 4.2.2. Transport Equation for the Spalart-Allmaras Model ................................................................. 43 4.2.3. Modeling the Turbulent Viscosity ............................................................................................ 43 4.2.4. Modeling the Turbulent Production ........................................................................................ 43 4.2.5. Modeling the Turbulent Destruction ....................................................................................... 44 4.2.6. Model Constants .................................................................................................................... 45 4.2.7. Wall Boundary Conditions ...................................................................................................... 45 4.2.8. Convective Heat and Mass Transfer Modeling .......................................................................... 45 4.3. Standard, RNG, and Realizable k-ε Models ........................................................................................ 45 4.3.1. Standard k-ε Model ................................................................................................................ 46 4.3.1.1. Overview ....................................................................................................................... 46 4.3.1.2.Transport Equations for the Standard k-ε Model ............................................................. 46 4.3.1.3. Modeling the Turbulent Viscosity ................................................................................... 47 4.3.1.4. Model Constants ........................................................................................................... 47 4.3.2. RNG k-ε Model ....................................................................................................................... 47 4.3.2.1. Overview ....................................................................................................................... 47 4.3.2.2.Transport Equations for the RNG k-ε Model ..................................................................... 48 4.3.2.3. Modeling the Effective Viscosity ..................................................................................... 48 4.3.2.4. RNG Swirl Modification .................................................................................................. 49 4.3.2.5. Calculating the Inverse Effective Prandtl Numbers .......................................................... 49 4.3.2.6.The R-ε Term in the ε Equation ........................................................................................ 49 4.3.2.7. Model Constants ........................................................................................................... 50 4.3.3. Realizable k-ε Model ............................................................................................................... 50 4.3.3.1. Overview ....................................................................................................................... 50 4.3.3.2.Transport Equations for the Realizable k-ε Model ............................................................ 51 4.3.3.3. Modeling the Turbulent Viscosity ................................................................................... 52 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information iv of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 4.3.3.4. Model Constants ........................................................................................................... 53 4.3.4. Modeling Turbulent Production in the k-ε Models ................................................................... 53 4.3.5. Effects of Buoyancy on Turbulence in the k-ε Models ............................................................... 53 4.3.6. Effects of Compressibility on Turbulence in the k-ε Models ...................................................... 54 4.3.7. Convective Heat and Mass Transfer Modeling in the k-ε Models ............................................... 55 4.4. Standard, BSL, and SST k-ω Models ................................................................................................... 56 4.4.1. Standard k-ω Model ............................................................................................................... 57 4.4.1.1. Overview ....................................................................................................................... 57 4.4.1.2.Transport Equations for the Standard k-ω Model ............................................................. 57 4.4.1.3. Modeling the Effective Diffusivity ................................................................................... 57 4.4.1.3.1. Low-Reynolds Number Correction ......................................................................... 58 4.4.1.4. Modeling the Turbulence Production ............................................................................. 58 4.4.1.4.1. Production of k ..................................................................................................... 58 4.4.1.4.2. Production of ω ..................................................................................................... 58 4.4.1.5. Modeling the Turbulence Dissipation ............................................................................. 59 4.4.1.5.1. Dissipation of k ..................................................................................................... 59 4.4.1.5.2. Dissipation of ω ..................................................................................................... 59 4.4.1.5.3. Compressibility Effects .......................................................................................... 60 4.4.1.6. Model Constants ........................................................................................................... 60 4.4.2. Baseline (BSL) k-ω Model ........................................................................................................ 60 4.4.2.1. Overview ....................................................................................................................... 60 4.4.2.2.Transport Equations for the BSL k-ω Model ..................................................................... 61 4.4.2.3. Modeling the Effective Diffusivity ................................................................................... 61 4.4.2.4. Modeling the Turbulence Production ............................................................................. 61 4.4.2.4.1. Production of k ..................................................................................................... 61 4.4.2.4.2. Production of ω ..................................................................................................... 62 4.4.2.5. Modeling the Turbulence Dissipation ............................................................................. 62 4.4.2.5.1. Dissipation of k ..................................................................................................... 62 4.4.2.5.2. Dissipation of ω ..................................................................................................... 62 4.4.2.6. Cross-Diffusion Modification .......................................................................................... 63 4.4.2.7. Model Constants ........................................................................................................... 63 4.4.3. Shear-Stress Transport (SST) k-ω Model ................................................................................... 63 4.4.3.1. Overview ....................................................................................................................... 63 4.4.3.2. Modeling the Turbulent Viscosity ................................................................................... 63 4.4.3.3. Model Constants ........................................................................................................... 63 4.4.4.Turbulence Damping .............................................................................................................. 64 4.4.5. Wall Boundary Conditions ...................................................................................................... 65 4.5. k-kl-ω Transition Model ................................................................................................................... 65 4.5.1. Overview ............................................................................................................................... 65 4.5.2.Transport Equations for the k-kl-ω Model ................................................................................ 65 4.5.2.1. Model Constants ........................................................................................................... 68 4.6.Transition SST Model ....................................................................................................................... 68 4.6.1. Overview ............................................................................................................................... 69 4.6.2.Transport Equations for the Transition SST Model .................................................................... 69 4.6.2.1. Separation-Induced Transition Correction ...................................................................... 71 4.6.2.2. Coupling the Transition Model and SST Transport Equations ........................................... 72 4.6.2.3.Transition SST and Rough Walls ...................................................................................... 72 4.6.3. Mesh Requirements ............................................................................................................... 73 4.6.4. Specifying Inlet Turbulence Levels .......................................................................................... 76 4.7. Intermittency Transition Model ....................................................................................................... 77 4.7.1. Overview ............................................................................................................................... 77 4.7.2.Transport Equations for the Intermittency Transition Model ..................................................... 78 v Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 4.7.3. Coupling with the Other Models ............................................................................................. 80 4.7.4. Intermittency Transition Model and Rough Walls ..................................................................... 80 4.8.The V2F Model ................................................................................................................................ 80 4.9. Reynolds Stress Model (RSM) ........................................................................................................... 81 4.9.1. Overview ............................................................................................................................... 81 4.9.2. Reynolds Stress Transport Equations ....................................................................................... 82 4.9.3. Modeling Turbulent Diffusive Transport .................................................................................. 83 4.9.4. Modeling the Pressure-Strain Term ......................................................................................... 83 4.9.4.1. Linear Pressure-Strain Model .......................................................................................... 83 4.9.4.2. Low-Re Modifications to the Linear Pressure-Strain Model .............................................. 84 4.9.4.3. Quadratic Pressure-Strain Model .................................................................................... 85 4.9.4.4. Stress-Omega Model ..................................................................................................... 85 4.9.4.5. Stress-BSL Model ........................................................................................................... 87 4.9.5. Effects of Buoyancy on Turbulence ......................................................................................... 87 4.9.6. Modeling the Turbulence Kinetic Energy ................................................................................. 87 4.9.7. Modeling the Dissipation Rate ................................................................................................ 88 4.9.8. Modeling the Turbulent Viscosity ............................................................................................ 88 4.9.9. Wall Boundary Conditions ...................................................................................................... 89 4.9.10. Convective Heat and Mass Transfer Modeling ........................................................................ 89 4.10. Scale-Adaptive Simulation (SAS) Model ......................................................................................... 90 4.10.1. Overview ............................................................................................................................. 90 4.10.2.Transport Equations for the SST-SAS Model ........................................................................... 91 4.10.3. SAS with Other ω-Based Turbulence Models .......................................................................... 93 4.11. Detached Eddy Simulation (DES) ................................................................................................... 93 4.11.1. Overview ............................................................................................................................. 93 4.11.2. DES with the Spalart-Allmaras Model .................................................................................... 94 4.11.3. DES with the Realizable k-ε Model ......................................................................................... 94 4.11.4. DES with the BSL or SST k-ω Model ....................................................................................... 95 4.11.5. DES with the Transition SST Model ........................................................................................ 96 4.11.6. Improved Delayed Detached Eddy Simulation (IDDES) .......................................................... 96 4.11.6.1. Overview of IDDES ....................................................................................................... 96 4.11.6.2. IDDES Model Formulation ............................................................................................ 97 4.12. Shielded Detached Eddy Simulation (SDES) ................................................................................... 97 4.12.1. Shielding Function ............................................................................................................... 98 4.12.2. LES Mode of SDES ................................................................................................................ 99 4.13. Stress-Blended Eddy Simulation (SBES) ........................................................................................ 100 4.13.1. Stress Blending ................................................................................................................... 101 4.13.2. SDES and SBES Example ..................................................................................................... 101 4.14. Large Eddy Simulation (LES) Model .............................................................................................. 102 4.14.1. Overview ........................................................................................................................... 102 4.14.2. Subgrid-Scale Models ......................................................................................................... 103 4.14.2.1. Smagorinsky-Lilly Model ............................................................................................ 104 4.14.2.2. Dynamic Smagorinsky-Lilly Model .............................................................................. 105 4.14.2.3.Wall-Adapting Local Eddy-Viscosity (WALE) Model ...................................................... 106 4.14.2.4. Algebraic Wall-Modeled LES Model (WMLES) .............................................................. 106 4.14.2.4.1. Algebraic WMLES Model Formulation ................................................................ 107 4.14.2.4.1.1. Reynolds Number Scaling ......................................................................... 107 4.14.2.4.2. Algebraic WMLES S-Omega Model Formulation ................................................. 108 4.14.2.5. Dynamic Kinetic Energy Subgrid-Scale Model ............................................................. 109 4.14.3. Inlet Boundary Conditions for the LES Model ....................................................................... 109 4.14.3.1.Vortex Method ........................................................................................................... 110 4.14.3.2. Spectral Synthesizer ................................................................................................... 111 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information vi of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 4.15. Embedded Large Eddy Simulation (ELES) ..................................................................................... 112 4.15.1. Overview ........................................................................................................................... 112 4.15.2. Selecting a Model ............................................................................................................... 112 4.15.3. Interfaces Treatment ........................................................................................................... 113 4.15.3.1. RANS-LES Interface .................................................................................................... 113 4.15.3.2. LES-RANS Interface .................................................................................................... 113 4.15.3.3. Internal Interface Without LES Zone ........................................................................... 114 4.15.3.4. Grid Generation Guidelines ........................................................................................ 114 4.16. Near-Wall Treatments for Wall-Bounded Turbulent Flows .............................................................. 115 4.16.1. Overview ........................................................................................................................... 115 4.16.1.1.Wall Functions vs. Near-Wall Model ............................................................................. 116 4.16.1.2. Wall Functions ........................................................................................................... 118 4.16.2. Standard Wall Functions ..................................................................................................... 118 4.16.2.1. Momentum ............................................................................................................... 118 4.16.2.2. Energy ....................................................................................................................... 119 4.16.2.3. Species ...................................................................................................................... 121 4.16.2.4. Turbulence ................................................................................................................ 121 4.16.3. Scalable Wall Functions ....................................................................................................... 122 4.16.4. Non-Equilibrium Wall Functions .......................................................................................... 122 4.16.4.1. Standard Wall Functions vs. Non-Equilibrium Wall Functions ....................................... 124 4.16.4.2. Limitations of the Wall Function Approach ................................................................. 124 4.16.5. Enhanced Wall Treatment ε-Equation (EWT-ε) ...................................................................... 124 4.16.5.1.Two-Layer Model for Enhanced Wall Treatment ........................................................... 125 4.16.5.2. Enhanced Wall Treatment for Momentum and Energy Equations ................................. 126 4.16.6. Menter-Lechner ε-Equation (ML-ε) ...................................................................................... 128 4.16.6.1. Momentum Equations ............................................................................................... 130 4.16.6.2. k-ε Turbulence Models ............................................................................................... 130 4.16.6.3. Iteration Improvements ............................................................................................. 130 4.16.7. y -Insensitive Wall Treatment ω-Equation ........................................................................... 130 4.16.8. User-Defined Wall Functions ............................................................................................... 131 4.16.9. LES Near-Wall Treatment ..................................................................................................... 131 4.17. Curvature Correction for the Spalart-Allmaras and Two-Equation Models ..................................... 131 4.18. Production Limiters for Two-Equation Models .............................................................................. 133 4.19. Definition of Turbulence Scales .................................................................................................... 135 4.19.1. RANS and Hybrid (SAS, DES, and SDES) Turbulence Models .................................................. 135 4.19.2. Large Eddy Simulation (LES) Models .................................................................................... 135 4.19.3. Stress-Blended Eddy Simulation (SBES) Model ..................................................................... 136 5. Heat Transfer ....................................................................................................................................... 137 5.1. Introduction ................................................................................................................................. 137 5.2. Modeling Conductive and Convective Heat Transfer ...................................................................... 137 5.2.1. Heat Transfer Theory ............................................................................................................. 137 5.2.1.1.The Energy Equation .................................................................................................... 137 5.2.1.2.The Energy Equation in Moving Reference Frames ........................................................ 138 5.2.1.3.The Energy Equation for the Non-Premixed Combustion Model .................................... 138 5.2.1.4. Inclusion of Pressure Work and Kinetic Energy Terms .................................................... 139 5.2.1.5. Inclusion of the Viscous Dissipation Terms .................................................................... 139 5.2.1.6. Inclusion of the Species Diffusion Term ........................................................................ 139 5.2.1.7. Energy Sources Due to Reaction ................................................................................... 140 5.2.1.8. Energy Sources Due To Radiation ................................................................................. 140 5.2.1.9. Energy Source Due To Joule Heating ............................................................................ 140 5.2.1.10. Interphase Energy Sources ......................................................................................... 140 5.2.1.11. Energy Equation in Solid Regions ............................................................................... 140 vii Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 5.2.1.12. Anisotropic Conductivity in Solids .............................................................................. 141 5.2.1.13. Diffusion at Inlets ....................................................................................................... 141 5.2.2. Natural Convection and Buoyancy-Driven Flows Theory ........................................................ 141 5.3. Modeling Radiation ...................................................................................................................... 142 5.3.1. Overview and Limitations ..................................................................................................... 142 5.3.1.1. Advantages and Limitations of the DTRM ..................................................................... 143 5.3.1.2. Advantages and Limitations of the P-1 Model ............................................................... 143 5.3.1.3. Advantages and Limitations of the Rosseland Model .................................................... 144 5.3.1.4. Advantages and Limitations of the DO Model ............................................................... 144 5.3.1.5. Advantages and Limitations of the S2S Model .............................................................. 144 5.3.2. Radiative Transfer Equation .................................................................................................. 145 5.3.3. P-1 Radiation Model Theory .................................................................................................. 146 5.3.3.1. The P-1 Model Equations ............................................................................................. 146 5.3.3.2. Anisotropic Scattering ................................................................................................. 148 5.3.3.3. Particulate Effects in the P-1 Model .............................................................................. 148 5.3.3.4. Boundary Condition Treatment for the P-1 Model at Walls ............................................. 149 5.3.3.5. Boundary Condition Treatment for the P-1 Model at Flow Inlets and Exits ...................... 150 5.3.4. Rosseland Radiation Model Theory ....................................................................................... 150 5.3.4.1.The Rosseland Model Equations ................................................................................... 150 5.3.4.2. Anisotropic Scattering ................................................................................................. 151 5.3.4.3. Boundary Condition Treatment at Walls ........................................................................ 151 5.3.4.4. Boundary Condition Treatment at Flow Inlets and Exits ................................................. 151 5.3.5. Discrete Transfer Radiation Model (DTRM) Theory ................................................................. 151 5.3.5.1.The DTRM Equations .................................................................................................... 151 5.3.5.2. Ray Tracing .................................................................................................................. 152 5.3.5.3. Clustering .................................................................................................................... 152 5.3.5.4. Boundary Condition Treatment for the DTRM at Walls ................................................... 153 5.3.5.5. Boundary Condition Treatment for the DTRM at Flow Inlets and Exits ............................ 153 5.3.6. Discrete Ordinates (DO) Radiation Model Theory ................................................................... 154 5.3.6.1. The DO Model Equations ............................................................................................. 154 5.3.6.2. Energy Coupling and the DO Model ............................................................................. 155 5.3.6.2.1. Limitations of DO/Energy Coupling ..................................................................... 156 5.3.6.3. Angular Discretization and Pixelation ........................................................................... 156 5.3.6.4. Anisotropic Scattering ................................................................................................. 159 5.3.6.5. Particulate Effects in the DO Model .............................................................................. 160 5.3.6.6. Boundary and Cell Zone Condition Treatment at Opaque Walls ..................................... 160 5.3.6.6.1. Gray Diffuse Walls ............................................................................................... 162 5.3.6.6.2. Non-Gray Diffuse Walls ........................................................................................ 162 5.3.6.7. Cell Zone and Boundary Condition Treatment at Semi-Transparent Walls ...................... 162 5.3.6.7.1. Semi-Transparent Interior Walls ........................................................................... 163 5.3.6.7.2. Specular Semi-Transparent Walls ......................................................................... 164 5.3.6.7.3. Diffuse Semi-Transparent Walls ............................................................................ 166 5.3.6.7.4. Partially Diffuse Semi-Transparent Walls ............................................................... 167 5.3.6.7.5. Semi-Transparent Exterior Walls ........................................................................... 167 5.3.6.7.6. Limitations .......................................................................................................... 169 5.3.6.7.7. Solid Semi-Transparent Media ............................................................................. 170 5.3.6.8. Boundary Condition Treatment at Specular Walls and Symmetry Boundaries ................. 170 5.3.6.9. Boundary Condition Treatment at Periodic Boundaries ................................................. 170 5.3.6.10. Boundary Condition Treatment at Flow Inlets and Exits ............................................... 170 5.3.7. Surface-to-Surface (S2S) Radiation Model Theory .................................................................. 170 5.3.7.1. Gray-Diffuse Radiation ................................................................................................. 170 5.3.7.2.The S2S Model Equations ............................................................................................. 171 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information viii of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 5.3.7.3. Clustering .................................................................................................................... 172 5.3.7.3.1. Clustering and View Factors ................................................................................ 172 5.3.7.3.2. Clustering and Radiosity ...................................................................................... 172 5.3.8. Radiation in Combusting Flows ............................................................................................ 173 5.3.8.1. The Weighted-Sum-of-Gray-Gases Model ..................................................................... 173 5.3.8.1.1.When the Total (Static) Gas Pressure is Not Equal to 1 atm .................................... 174 5.3.8.2.The Effect of Soot on the Absorption Coefficient ........................................................... 174 5.3.8.3.The Effect of Particles on the Absorption Coefficient ..................................................... 175 5.3.9. Choosing a Radiation Model ................................................................................................. 175 5.3.9.1. External Radiation ....................................................................................................... 176 6. Heat Exchangers .................................................................................................................................. 177 6.1.The Macro Heat Exchanger Models ................................................................................................ 177 6.1.1. Overview of the Macro Heat Exchanger Models .................................................................... 177 6.1.2. Restrictions of the Macro Heat Exchanger Models ................................................................. 179 6.1.3. Macro Heat Exchanger Model Theory .................................................................................... 180 6.1.3.1. Streamwise Pressure Drop ........................................................................................... 181 6.1.3.2. Heat Transfer Effectiveness ........................................................................................... 182 6.1.3.3. Heat Rejection ............................................................................................................. 183 6.1.3.4. Macro Heat Exchanger Group Connectivity .................................................................. 184 6.2. The Dual Cell Model ...................................................................................................................... 185 6.2.1. Overview of the Dual Cell Model ........................................................................................... 185 6.2.2. Restrictions of the Dual Cell Model ........................................................................................ 186 6.2.3. Dual Cell Model Theory ......................................................................................................... 186 6.2.3.1. NTU Relations .............................................................................................................. 187 6.2.3.2. Heat Rejection ............................................................................................................. 187 7. Species Transport and Finite-Rate Chemistry ..................................................................................... 189 7.1. Volumetric Reactions .................................................................................................................... 189 7.1.1. Species Transport Equations ................................................................................................. 189 7.1.1.1. Mass Diffusion in Laminar Flows ................................................................................... 190 7.1.1.2. Mass Diffusion in Turbulent Flows ................................................................................ 190 7.1.1.3.Treatment of Species Transport in the Energy Equation ................................................. 190 7.1.1.4. Diffusion at Inlets ......................................................................................................... 190 7.1.2.The Generalized Finite-Rate Formulation for Reaction Modeling ............................................ 191 7.1.2.1. Direct Use of Finite-Rate Kinetics (no TCI) ...................................................................... 191 7.1.2.2. Pressure-Dependent Reactions .................................................................................... 193 7.1.2.3.The Eddy-Dissipation Model ......................................................................................... 195 7.1.2.4. The Eddy-Dissipation Model for LES ............................................................................. 196 7.1.2.5. The Eddy-Dissipation-Concept (EDC) Model ................................................................. 196 7.1.2.6.The Thickened Flame Model ......................................................................................... 198 7.1.2.7.The Relaxation to Chemical Equilibrium Model ............................................................. 199 7.2.Wall Surface Reactions and Chemical Vapor Deposition .................................................................. 201 7.2.1. Surface Coverage Reaction Rate Modification ....................................................................... 202 7.2.2. Reaction-Diffusion Balance for Surface Chemistry ................................................................. 203 7.2.3. Slip Boundary Formulation for Low-Pressure Gas Systems ..................................................... 203 7.3. Particle Surface Reactions ............................................................................................................. 205 7.3.1. General Description .............................................................................................................. 205 7.3.2. ANSYS Fluent Model Formulation ......................................................................................... 206 7.3.3. Extension for Stoichiometries with Multiple Gas Phase Reactants .......................................... 207 7.3.4. Solid-Solid Reactions ............................................................................................................ 208 7.3.5. Solid Decomposition Reactions ............................................................................................ 208 7.3.6. Solid Deposition Reactions ................................................................................................... 208 7.3.7. Gaseous Solid Catalyzed Reactions on the Particle Surface .................................................... 208 ix Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 7.4. Electrochemical Reactions ............................................................................................................. 209 7.4.1. Overview and Limitations ..................................................................................................... 209 7.4.2. Electrochemical Reaction Model Theory ................................................................................ 209 7.5. Reacting Channel Model ............................................................................................................... 212 7.5.1. Overview and Limitations ..................................................................................................... 212 7.5.2. Reacting Channel Model Theory ........................................................................................... 213 7.5.2.1. Flow Inside the Reacting Channel ................................................................................. 213 7.5.2.2. Surface Reactions in the Reacting Channel ................................................................... 214 7.5.2.3. Porous Medium Inside Reacting Channel ...................................................................... 215 7.5.2.4. Outer Flow in the Shell ................................................................................................. 215 7.6. Reactor Network Model ................................................................................................................ 216 7.6.1. Reactor Network Model Theory ............................................................................................ 216 7.6.1.1. Reactor network temperature solution ......................................................................... 217 8. Non-Premixed Combustion ................................................................................................................. 219 8.1. Introduction ................................................................................................................................. 219 8.2. Non-Premixed Combustion and Mixture Fraction Theory ............................................................... 219 8.2.1. Mixture Fraction Theory ....................................................................................................... 220 8.2.1.1. Definition of the Mixture Fraction ................................................................................ 220 8.2.1.2.Transport Equations for the Mixture Fraction ................................................................ 222 8.2.1.3. The Non-Premixed Model for LES ................................................................................. 223 8.2.1.4. Mixture Fraction vs. Equivalence Ratio .......................................................................... 223 8.2.1.5. Relationship of Mixture Fraction to Species Mass Fraction, Density, and Temperature ..... 224 8.2.2. Modeling of Turbulence-Chemistry Interaction ..................................................................... 225 8.2.2.1. Description of the Probability Density Function ............................................................ 225 8.2.2.2. Derivation of Mean Scalar Values from the Instantaneous Mixture Fraction ................... 225 8.2.2.3. The Assumed-Shape PDF ............................................................................................. 226 8.2.2.3.1.The Double Delta Function PDF ........................................................................... 226 8.2.2.3.2.The β-Function PDF ............................................................................................. 227 8.2.3. Non-Adiabatic Extensions of the Non-Premixed Model .......................................................... 228 8.2.4. Chemistry Tabulation ........................................................................................................... 230 8.2.4.1. Look-Up Tables for Adiabatic Systems ........................................................................... 230 8.2.4.2. 3D Look-Up Tables for Non-Adiabatic Systems .............................................................. 232 8.2.4.3. Generating Lookup Tables Through Automated Grid Refinement .................................. 234 8.3. Restrictions and Special Cases for Using the Non-Premixed Model ................................................. 236 8.3.1. Restrictions on the Mixture Fraction Approach ...................................................................... 236 8.3.2. Using the Non-Premixed Model for Liquid Fuel or Coal Combustion ...................................... 239 8.3.3. Using the Non-Premixed Model with Flue Gas Recycle .......................................................... 240 8.3.4. Using the Non-Premixed Model with the Inert Model ............................................................ 240 8.3.4.1. Mixture Composition ................................................................................................... 241 8.3.4.1.1. Property Evaluation ............................................................................................. 242 8.4.The Diffusion Flamelet Models Theory ........................................................................................... 242 8.4.1. Restrictions and Assumptions ............................................................................................... 242 8.4.2.The Flamelet Concept ........................................................................................................... 242 8.4.2.1. Overview ..................................................................................................................... 242 8.4.2.2. Strain Rate and Scalar Dissipation ................................................................................. 244 8.4.2.3. Embedding Diffusion Flamelets in Turbulent Flames ..................................................... 244 8.4.3. Flamelet Generation ............................................................................................................. 245 8.4.4. Flamelet Import ................................................................................................................... 246 8.5. The Steady Diffusion Flamelet Model Theory ................................................................................. 248 8.5.1. Overview ............................................................................................................................. 248 8.5.2. Multiple Steady Flamelet Libraries ........................................................................................ 249 8.5.3. Steady Diffusion Flamelet Automated Grid Refinement ......................................................... 249 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information x of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 8.5.4. Non-Adiabatic Steady Diffusion Flamelets ............................................................................. 249 8.6. The Unsteady Diffusion Flamelet Model Theory ............................................................................. 250 8.6.1. The Eulerian Unsteady Laminar Flamelet Model .................................................................... 251 8.6.1.1. Liquid Reactions .......................................................................................................... 253 8.6.2. The Diesel Unsteady Laminar Flamelet Model ....................................................................... 253 8.6.3. Multiple Diesel Unsteady Flamelets ....................................................................................... 254 8.6.4. Multiple Diesel Unsteady Flamelets with Flamelet Reset ........................................................ 254 8.6.4.1. Resetting the Flamelets ................................................................................................ 255 9. Premixed Combustion ......................................................................................................................... 257 9.1. Overview and Limitations ............................................................................................................. 257 9.1.1. Overview ............................................................................................................................. 257 9.1.2. Limitations ........................................................................................................................... 258 9.2. C-Equation Model Theory .............................................................................................................. 258 9.2.1. Propagation of the Flame Front ............................................................................................ 258 9.3. G-Equation Model Theory ............................................................................................................. 260 9.3.1. Numerical Solution of the G-equation ................................................................................... 261 9.4. Turbulent Flame Speed Models ..................................................................................................... 261 9.4.1. Zimont Turbulent Flame Speed Closure Model ...................................................................... 261 9.4.1.1. Zimont Turbulent Flame Speed Closure for LES ............................................................. 262 9.4.1.2. Flame Stretch Effect ..................................................................................................... 263 9.4.1.3. Gradient Diffusion ....................................................................................................... 263 9.4.1.4.Wall Damping .............................................................................................................. 264 9.4.2. Peters Flame Speed Model .................................................................................................... 264 9.4.2.1. Peters Flame Speed Model for LES ................................................................................ 265 9.5. Extended Coherent Flamelet Model Theory ................................................................................... 266 9.5.1. Closure for ECFM Source Terms ............................................................................................. 268 9.5.2.Turbulent Flame Speed in ECFM ............................................................................................ 270 9.5.3. LES and ECFM ...................................................................................................................... 270 9.6. Calculation of Properties ............................................................................................................... 272 9.6.1. Calculation of Temperature ................................................................................................... 273 9.6.1.1. Adiabatic Temperature Calculation ............................................................................... 273 9.6.1.2. Non-Adiabatic Temperature Calculation ....................................................................... 273 9.6.2. Calculation of Density .......................................................................................................... 273 9.6.3. Laminar Flame Speed ........................................................................................................... 274 9.6.4. Unburnt Density and Thermal Diffusivity ............................................................................... 274 10. Partially Premixed Combustion ........................................................................................................ 275 10.1. Overview .................................................................................................................................... 275 10.2. Limitations .................................................................................................................................. 275 10.3. Partially Premixed Combustion Theory ........................................................................................ 276 10.3.1. Chemical Equilibrium and Steady Diffusion Flamelet Models ............................................... 276 10.3.2. Flamelet Generated Manifold (FGM) model ......................................................................... 277 10.3.2.1. Premixed FGMs .......................................................................................................... 277 10.3.2.2. Diffusion FGMs .......................................................................................................... 279 10.3.3. FGM Turbulent Closure ....................................................................................................... 279 10.3.4. Calculation of Unburnt Properties ....................................................................................... 281 10.3.5. Laminar Flame Speed ......................................................................................................... 281 11. Composition PDF Transport .............................................................................................................. 283 11.1. Overview and Limitations ............................................................................................................ 283 11.2. Composition PDF Transport Theory ............................................................................................. 283 11.3.The Lagrangian Solution Method ................................................................................................. 284 11.3.1. Particle Convection ............................................................................................................ 285 11.3.2. Particle Mixing ................................................................................................................... 286 xi Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 11.3.2.1.The Modified Curl Model ............................................................................................ 286 11.3.2.2.The IEM Model ........................................................................................................... 286 11.3.2.3. The EMST Model ........................................................................................................ 287 11.3.2.4. Liquid Reactions ........................................................................................................ 287 11.3.3. Particle Reaction ................................................................................................................. 287 11.4. The Eulerian Solution Method ..................................................................................................... 288 11.4.1. Reaction ............................................................................................................................. 289 11.4.2. Mixing ................................................................................................................................ 289 11.4.3. Correction .......................................................................................................................... 290 11.4.4. Calculation of Composition Mean and Variance ................................................................... 290 12. Chemistry Acceleration ..................................................................................................................... 291 12.1. Overview and Limitations ............................................................................................................ 291 12.2. In-Situ Adaptive Tabulation (ISAT) ................................................................................................ 291 12.3. Dynamic Mechanism Reduction .................................................................................................. 293 12.3.1. Directed Relation Graph (DRG) Method for Mechanism Reduction ....................................... 294 12.4. Chemistry Agglomeration ........................................................................................................... 295 12.4.1. Binning Algorithm .............................................................................................................. 296 12.5. Chemical Mechanism Dimension Reduction ................................................................................ 298 12.5.1. Selecting the Represented Species ...................................................................................... 298 12.6. Dynamic Cell Clustering with ANSYS CHEMKIN-CFD Solver ........................................................... 299 13. Engine Ignition .................................................................................................................................. 301 13.1. Spark Model ................................................................................................................................ 301 13.1.1. Overview and Limitations ................................................................................................... 301 13.1.2. Spark Model Theory ............................................................................................................ 301 13.1.3. ECFM Spark Model Variants ................................................................................................. 304 13.2. Autoignition Models ................................................................................................................... 305 13.2.1. Model Overview ................................................................................................................. 305 13.2.2. Model Limitations .............................................................................................................. 305 13.2.3. Ignition Model Theory ........................................................................................................ 306 13.2.3.1.Transport of Ignition Species ...................................................................................... 306 13.2.3.2. Knock Modeling ........................................................................................................ 306 13.2.3.2.1. Modeling of the Source Term ............................................................................. 307 13.2.3.2.2. Correlations ...................................................................................................... 307 13.2.3.2.3. Energy Release .................................................................................................. 308 13.2.3.3. Ignition Delay Modeling ............................................................................................. 308 13.2.3.3.1. Modeling of the Source Term ............................................................................. 308 13.2.3.3.2. Correlations ...................................................................................................... 309 13.2.3.3.3. Energy Release .................................................................................................. 309 13.3. Crevice Model ............................................................................................................................. 309 13.3.1. Overview ........................................................................................................................... 309 13.3.1.1. Model Parameters ...................................................................................................... 310 13.3.2. Limitations ......................................................................................................................... 311 13.3.3. Crevice Model Theory ......................................................................................................... 312 14. Pollutant Formation .......................................................................................................................... 313 14.1. NOx Formation ........................................................................................................................... 313 14.1.1. Overview ........................................................................................................................... 313 14.1.1.1. NOx Modeling in ANSYS Fluent .................................................................................. 313 14.1.1.2. NOx Formation and Reduction in Flames .................................................................... 314 14.1.2. Governing Equations for NOx Transport .............................................................................. 314 14.1.3.Thermal NOx Formation ...................................................................................................... 315 14.1.3.1. Thermal NOx Reaction Rates ...................................................................................... 315 14.1.3.2. The Quasi-Steady Assumption for [N] ......................................................................... 315 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xii of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 14.1.3.3.Thermal NOx Temperature Sensitivity ......................................................................... 316 14.1.3.4. Decoupled Thermal NOx Calculations ......................................................................... 316 14.1.3.5. Approaches for Determining O Radical Concentration ................................................ 316 14.1.3.5.1. Method 1: Equilibrium Approach ....................................................................... 316 14.1.3.5.2. Method 2: Partial Equilibrium Approach ............................................................. 317 14.1.3.5.3. Method 3: Predicted O Approach ....................................................................... 317 14.1.3.6. Approaches for Determining OH Radical Concentration .............................................. 317 14.1.3.6.1. Method 1: Exclusion of OH Approach ................................................................. 317 14.1.3.6.2. Method 2: Partial Equilibrium Approach ............................................................. 317 14.1.3.6.3. Method 3: Predicted OH Approach ..................................................................... 318 14.1.3.7. Summary ................................................................................................................... 318 14.1.4. Prompt NOx Formation ....................................................................................................... 318 14.1.4.1. Prompt NOx Combustion Environments ..................................................................... 318 14.1.4.2. Prompt NOx Mechanism ............................................................................................ 318 14.1.4.3. Prompt NOx Formation Factors .................................................................................. 319 14.1.4.4. Primary Reaction ....................................................................................................... 319 14.1.4.5. Modeling Strategy ..................................................................................................... 319 14.1.4.6. Rate for Most Hydrocarbon Fuels ................................................................................ 320 14.1.4.7. Oxygen Reaction Order .............................................................................................. 320 14.1.5. Fuel NOx Formation ............................................................................................................ 321 14.1.5.1. Fuel-Bound Nitrogen ................................................................................................. 321 14.1.5.2. Reaction Pathways ..................................................................................................... 321 14.1.5.3. Fuel NOx from Gaseous and Liquid Fuels .................................................................... 321 14.1.5.3.1. Fuel NOx from Intermediate Hydrogen Cyanide (HCN) ....................................... 322 14.1.5.3.1.1. HCN Production in a Gaseous Fuel ............................................................ 322 14.1.5.3.1.2. HCN Production in a Liquid Fuel ................................................................ 322 14.1.5.3.1.3. HCN Consumption .................................................................................... 323 14.1.5.3.1.4. HCN Sources in the Transport Equation ..................................................... 323 14.1.5.3.1.5. NOx Sources in the Transport Equation ..................................................... 323 14.1.5.3.2. Fuel NOx from Intermediate Ammonia (NH3) ..................................................... 324 14.1.5.3.2.1. NH3 Production in a Gaseous Fuel ............................................................. 324 14.1.5.3.2.2. NH3 Production in a Liquid Fuel ................................................................ 324 14.1.5.3.2.3. NH3 Consumption .................................................................................... 325 14.1.5.3.2.4. NH3 Sources in the Transport Equation ..................................................... 325 14.1.5.3.2.5. NOx Sources in the Transport Equation ..................................................... 325 14.1.5.3.3. Fuel NOx from Coal ........................................................................................... 326 14.1.5.3.3.1. Nitrogen in Char and in Volatiles ............................................................... 326 14.1.5.3.3.2. Coal Fuel NOx Scheme A ........................................................................... 326 14.1.5.3.3.3. Coal Fuel NOx Scheme B ........................................................................... 326 14.1.5.3.3.4. HCN Scheme Selection ............................................................................. 327 14.1.5.3.3.5. NOx Reduction on Char Surface ................................................................ 327 14.1.5.3.3.5.1. BET Surface Area .............................................................................. 328 14.1.5.3.3.5.2. HCN from Volatiles ........................................................................... 328 14.1.5.3.3.6. Coal Fuel NOx Scheme C ........................................................................... 328 14.1.5.3.3.7. Coal Fuel NOx Scheme D ........................................................................... 329 14.1.5.3.3.8. NH3 Scheme Selection ............................................................................. 330 14.1.5.3.3.8.1. NH3 from Volatiles ........................................................................... 330 14.1.5.3.4. Fuel Nitrogen Partitioning for HCN and NH3 Intermediates ................................ 330 14.1.6. NOx Formation from Intermediate N2O ............................................................................... 331 14.1.6.1. N2O - Intermediate NOx Mechanism .......................................................................... 331 14.1.7. NOx Reduction by Reburning ............................................................................................. 332 14.1.7.1. Instantaneous Approach ............................................................................................ 332 xiii Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 14.1.7.2. Partial Equilibrium Approach ..................................................................................... 333 14.1.7.2.1. NOx Reduction Mechanism ............................................................................... 333 14.1.8. NOx Reduction by SNCR ..................................................................................................... 335 14.1.8.1. Ammonia Injection .................................................................................................... 335 14.1.8.2. Urea Injection ............................................................................................................ 336 14.1.8.3. Transport Equations for Urea, HNCO, and NCO ............................................................ 337 14.1.8.4. Urea Production due to Reagent Injection .................................................................. 338 14.1.8.5. NH3 Production due to Reagent Injection ................................................................... 338 14.1.8.6. HNCO Production due to Reagent Injection ................................................................ 338 14.1.9. NOx Formation in Turbulent Flows ...................................................................................... 339 14.1.9.1. The Turbulence-Chemistry Interaction Model ............................................................. 339 14.1.9.2. The PDF Approach ..................................................................................................... 340 14.1.9.3.The General Expression for the Mean Reaction Rate .................................................... 340 14.1.9.4.The Mean Reaction Rate Used in ANSYS Fluent ........................................................... 340 14.1.9.5. Statistical Independence ............................................................................................ 340 14.1.9.6.The Beta PDF Option .................................................................................................. 341 14.1.9.7.The Gaussian PDF Option ........................................................................................... 341 14.1.9.8. The Calculation Method for the Variance .................................................................... 341 14.2. SOx Formation ............................................................................................................................ 342 14.2.1. Overview ........................................................................................................................... 342 14.2.1.1.The Formation of SOx ................................................................................................. 342 14.2.2. Governing Equations for SOx Transport ............................................................................... 343 14.2.3. Reaction Mechanisms for Sulfur Oxidation .......................................................................... 344 14.2.4. SO2 and H2S Production in a Gaseous Fuel ......................................................................... 345 14.2.5. SO2 and H2S Production in a Liquid Fuel ............................................................................. 346 14.2.6. SO2 and H2S Production from Coal ..................................................................................... 346 14.2.6.1. SO2 and H2S from Char .............................................................................................. 346 14.2.6.2. SO2 and H2S from Volatiles ........................................................................................ 346 14.2.7. SOx Formation in Turbulent Flows ....................................................................................... 347 14.2.7.1. The Turbulence-Chemistry Interaction Model ............................................................. 347 14.2.7.2. The PDF Approach ..................................................................................................... 347 14.2.7.3.The Mean Reaction Rate ............................................................................................. 347 14.2.7.4.The PDF Options ........................................................................................................ 347 14.3. Soot Formation ........................................................................................................................... 347 14.3.1. Overview and Limitations ................................................................................................... 348 14.3.1.1. Predicting Soot Formation ......................................................................................... 348 14.3.1.2. Restrictions on Soot Modeling ................................................................................... 348 14.3.2. Soot Model Theory ............................................................................................................. 349 14.3.2.1.The One-Step Soot Formation Model .......................................................................... 349 14.3.2.2.The Two-Step Soot Formation Model .......................................................................... 350 14.3.2.2.1. Soot Generation Rate ........................................................................................ 350 14.3.2.2.2. Nuclei Generation Rate ...................................................................................... 351 14.3.2.3. The Moss-Brookes Model ........................................................................................... 351 14.3.2.3.1.The Moss-Brookes-Hall Model ............................................................................ 353 14.3.2.3.2. Soot Formation in Turbulent Flows .................................................................... 354 14.3.2.3.2.1.The Turbulence-Chemistry Interaction Model ............................................ 354 14.3.2.3.2.2.The PDF Approach .................................................................................... 355 14.3.2.3.2.3. The Mean Reaction Rate ........................................................................... 355 14.3.2.3.2.4.The PDF Options ....................................................................................... 355 14.3.2.3.3.The Effect of Soot on the Radiation Absorption Coefficient ................................. 355 14.3.2.4.The Method of Moments Model ................................................................................. 355 14.3.2.4.1. Soot Particle Population Balance ....................................................................... 355 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xiv of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 14.3.2.4.2. Moment Transport Equations ............................................................................ 357 14.3.2.4.3. Nucleation ........................................................................................................ 357 14.3.2.4.4. Coagulation ...................................................................................................... 359 14.3.2.4.5. Surface Growth and Oxidation ........................................................................... 362 14.3.2.4.6. Soot Aggregation .............................................................................................. 364 14.4. Decoupled Detailed Chemistry Model ......................................................................................... 368 14.4.1. Overview ........................................................................................................................... 368 14.4.1.1. Limitations ................................................................................................................ 369 14.4.2. Decoupled Detailed Chemistry Model Theory ..................................................................... 369 15. Aerodynamically Generated Noise ................................................................................................... 371 15.1. Overview .................................................................................................................................... 371 15.1.1. Direct Method .................................................................................................................... 371 15.1.2. Integral Method Based on Acoustic Analogy ....................................................................... 372 15.1.3. Broadband Noise Source Models ........................................................................................ 373 15.2. Acoustics Model Theory .............................................................................................................. 373 15.2.1. The Ffowcs-Williams and Hawkings Model .......................................................................... 373 15.2.2. Broadband Noise Source Models ........................................................................................ 376 15.2.2.1. Proudman’s Formula .................................................................................................. 376 15.2.2.2.The Jet Noise Source Model ........................................................................................ 377 15.2.2.3.The Boundary Layer Noise Source Model .................................................................... 378 15.2.2.4. Source Terms in the Linearized Euler Equations ........................................................... 379 15.2.2.5. Source Terms in Lilley’s Equation ................................................................................ 379 16. Discrete Phase ................................................................................................................................... 381 16.1. Introduction ............................................................................................................................... 381 16.1.1.The Euler-Lagrange Approach ............................................................................................. 381 16.2. Particle Motion Theory ................................................................................................................ 382 16.2.1. Equations of Motion for Particles ........................................................................................ 382 16.2.1.1. Particle Force Balance ................................................................................................ 382 16.2.1.2. Particle Torque Balance .............................................................................................. 382 16.2.1.3. Inclusion of the Gravity Term ...................................................................................... 383 16.2.1.4. Other Forces .............................................................................................................. 383 16.2.1.5. Forces in Moving Reference Frames ............................................................................ 383 16.2.1.6.Thermophoretic Force ................................................................................................ 384 16.2.1.7. Brownian Force .......................................................................................................... 384 16.2.1.8. Saffman’s Lift Force .................................................................................................... 385 16.2.1.9. Magnus Lift Force ...................................................................................................... 385 16.2.2.Turbulent Dispersion of Particles ......................................................................................... 386 16.2.2.1. Stochastic Tracking .................................................................................................... 386 16.2.2.1.1. The Integral Time .............................................................................................. 387 16.2.2.1.2.The Discrete Random Walk Model ...................................................................... 387 16.2.2.1.3. Using the DRW Model ....................................................................................... 388 16.2.2.2. Particle Cloud Tracking ............................................................................................... 389 16.2.2.2.1. Using the Cloud Model ...................................................................................... 391 16.2.3. Integration of Particle Equation of Motion ........................................................................... 391 16.3. Laws for Drag Coefficients ........................................................................................................... 393 16.3.1. Spherical Drag Law ............................................................................................................. 394 16.3.2. Non-spherical Drag Law ..................................................................................................... 394 16.3.3. Stokes-Cunningham Drag Law ............................................................................................ 394 16.3.4. High-Mach-Number Drag Law ............................................................................................ 395 16.3.5. Dynamic Drag Model Theory .............................................................................................. 395 16.3.6. Dense Discrete Phase Model Drag Laws .............................................................................. 395 16.3.7. Rotational Drag Law ........................................................................................................... 396 xv Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 16.4. Laws for Heat and Mass Exchange ............................................................................................... 396 16.4.1. Inert Heating or Cooling (Law 1/Law 6) ............................................................................... 397 16.4.2. Droplet Vaporization (Law 2) ............................................................................................... 398 16.4.2.1. Mass Transfer During Law 2—Diffusion Controlled Model ........................................... 399 16.4.2.2. Mass Transfer During Law 2—Convection/Diffusion Controlled Model ........................ 400 16.4.2.3. Defining the Saturation Vapor Pressure and Diffusion Coefficient (or Binary Diffusivity) ......................................................................................................................................... 401 16.4.2.4. Defining the Boiling Point and Latent Heat ................................................................. 401 16.4.2.5. Heat Transfer to the Droplet ....................................................................................... 402 16.4.3. Droplet Boiling (Law 3) ....................................................................................................... 404 16.4.4. Devolatilization (Law 4) ...................................................................................................... 405 16.4.4.1. Choosing the Devolatilization Model .......................................................................... 405 16.4.4.2.The Constant Rate Devolatilization Model ................................................................... 406 16.4.4.3. The Single Kinetic Rate Model .................................................................................... 406 16.4.4.4.The Two Competing Rates (Kobayashi) Model ............................................................. 407 16.4.4.5. The CPD Model .......................................................................................................... 407 16.4.4.5.1. General Description .......................................................................................... 408 16.4.4.5.2. Reaction Rates .................................................................................................. 408 16.4.4.5.3. Mass Conservation ............................................................................................ 409 16.4.4.5.4. Fractional Change in the Coal Mass .................................................................... 409 16.4.4.5.5. CPD Inputs ........................................................................................................ 410 16.4.4.5.6. Particle Swelling During Devolatilization ............................................................ 411 16.4.4.5.7. Heat Transfer to the Particle During Devolatilization ........................................... 412 16.4.5. Surface Combustion (Law 5) ............................................................................................... 412 16.4.5.1.The Diffusion-Limited Surface Reaction Rate Model .................................................... 413 16.4.5.2.The Kinetic/Diffusion Surface Reaction Rate Model ..................................................... 414 16.4.5.3. The Intrinsic Model .................................................................................................... 414 16.4.5.4.The Multiple Surface Reactions Model ........................................................................ 416 16.4.5.4.1. Limitations ........................................................................................................ 416 16.4.5.5. Heat and Mass Transfer During Char Combustion ....................................................... 416 16.4.6. Multicomponent Particle Definition (Law 7) ........................................................................ 417 16.4.6.1. Raoult’s Law .............................................................................................................. 418 16.4.6.2. Peng-Robinson Real Gas Model .................................................................................. 418 16.5.Vapor Liquid Equilibrium Theory .................................................................................................. 419 16.6. Physical Property Averaging ........................................................................................................ 421 16.7.Wall-Particle Reflection Model Theory .......................................................................................... 422 16.7.1. Rough Wall Model .............................................................................................................. 425 16.8.Wall-Jet Model Theory ................................................................................................................. 426 16.9.Wall-Film Model Theory ............................................................................................................... 427 16.9.1. Introduction ....................................................................................................................... 427 16.9.2. Interaction During Impact with a Boundary ......................................................................... 429 16.9.2.1. The Stanton-Rutland Model ....................................................................................... 429 16.9.2.1.1. Regime Definition ............................................................................................. 429 16.9.2.1.2. Splashing .......................................................................................................... 431 16.9.2.2.The Kuhnke Model ..................................................................................................... 434 16.9.2.2.1. Regime definition ............................................................................................. 434 16.9.2.2.2. Splashing .......................................................................................................... 437 16.9.3. Separation Criteria .............................................................................................................. 439 16.9.4. Conservation Equations for Wall-Film Particles .................................................................... 440 16.9.4.1. Momentum ............................................................................................................... 440 16.9.4.2. Mass Transfer from the Film ........................................................................................ 441 16.9.4.3. Energy Transfer from the Film ..................................................................................... 443 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xvi of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 16.10. Particle Erosion and Accretion Theory ........................................................................................ 444 16.11. Particle–Wall Impingement Heat Transfer Theory ....................................................................... 446 16.12. Atomizer Model Theory ............................................................................................................. 447 16.12.1.The Plain-Orifice Atomizer Model ...................................................................................... 448 16.12.1.1. Internal Nozzle State ................................................................................................ 449 16.12.1.2. Coefficient of Discharge ........................................................................................... 450 16.12.1.3. Exit Velocity ............................................................................................................. 452 16.12.1.4. Spray Angle ............................................................................................................. 452 16.12.1.5. Droplet Diameter Distribution .................................................................................. 452 16.12.2. The Pressure-Swirl Atomizer Model ................................................................................... 454 16.12.2.1. Film Formation ........................................................................................................ 454 16.12.2.2. Sheet Breakup and Atomization ............................................................................... 455 16.12.3.The Air-Blast/Air-Assist Atomizer Model ............................................................................. 457 16.12.4.The Flat-Fan Atomizer Model ............................................................................................. 458 16.12.5.The Effervescent Atomizer Model ...................................................................................... 459 16.13. Secondary Breakup Model Theory ............................................................................................. 460 16.13.1.Taylor Analogy Breakup (TAB) Model ................................................................................. 460 16.13.1.1. Introduction ............................................................................................................ 460 16.13.1.2. Use and Limitations ................................................................................................. 461 16.13.1.3. Droplet Distortion .................................................................................................... 461 16.13.1.4. Size of Child Droplets ............................................................................................... 462 16.13.1.5.Velocity of Child Droplets ......................................................................................... 463 16.13.1.6. Droplet Breakup ...................................................................................................... 463 16.13.2.Wave Breakup Model ........................................................................................................ 464 16.13.2.1. Introduction ............................................................................................................ 464 16.13.2.2. Use and Limitations ................................................................................................. 465 16.13.2.3. Jet Stability Analysis ................................................................................................. 465 16.13.2.4. Droplet Breakup ...................................................................................................... 466 16.13.3. KHRT Breakup Model ........................................................................................................ 467 16.13.3.1. Introduction ............................................................................................................ 467 16.13.3.2. Use and Limitations ................................................................................................. 467 16.13.3.3. Liquid Core Length .................................................................................................. 467 16.13.3.4. Rayleigh-Taylor Breakup ........................................................................................... 468 16.13.3.5. Droplet Breakup Within the Liquid Core .................................................................... 469 16.13.3.6. Droplet Breakup Outside the Liquid Core .................................................................. 469 16.13.4. Stochastic Secondary Droplet (SSD) Model ........................................................................ 469 16.13.4.1. Theory ..................................................................................................................... 469 16.14. Collision and Droplet Coalescence Model Theory ....................................................................... 470 16.14.1. Introduction ..................................................................................................................... 470 16.14.2. Use and Limitations .......................................................................................................... 471 16.14.3.Theory .............................................................................................................................. 471 16.14.3.1. Probability of Collision ............................................................................................. 471 16.14.3.2. Collision Outcomes .................................................................................................. 472 16.15. Discrete Element Method Collision Model .................................................................................. 473 16.15.1.Theory .............................................................................................................................. 473 16.15.1.1. The Spring Collision Law .......................................................................................... 474 16.15.1.2. The Spring-Dashpot Collision Law ............................................................................ 475 16.15.1.3. The Hertzian Collision Law ....................................................................................... 475 16.15.1.4. The Hertzian-Dashpot Collision Law ......................................................................... 476 16.15.1.5.The Friction Collision Law ......................................................................................... 476 16.15.1.6. Rolling Friction Collision Law for DEM ....................................................................... 477 16.15.1.7. DEM Parcels ............................................................................................................. 477 xvii Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 16.15.1.8. Cartesian Collision Mesh .......................................................................................... 478 16.16. One-Way and Two-Way Coupling ............................................................................................... 478 16.16.1. Coupling Between the Discrete and Continuous Phases .................................................... 479 16.16.2. Momentum Exchange ...................................................................................................... 479 16.16.3. Heat Exchange ................................................................................................................. 480 16.16.4. Mass Exchange ................................................................................................................. 481 16.16.5. Under-Relaxation of the Interphase Exchange Terms ......................................................... 481 16.16.6. Interphase Exchange During Stochastic Tracking ............................................................... 482 16.16.7. Interphase Exchange During Cloud Tracking ..................................................................... 483 16.17. Node Based Averaging .............................................................................................................. 483 17. Multiphase Flows .............................................................................................................................. 485 17.1. Introduction ............................................................................................................................... 485 17.1.1. Multiphase Flow Regimes ................................................................................................... 485 17.1.1.1. Gas-Liquid or Liquid-Liquid Flows .............................................................................. 485 17.1.1.2. Gas-Solid Flows .......................................................................................................... 486 17.1.1.3. Liquid-Solid Flows ...................................................................................................... 486 17.1.1.4. Three-Phase Flows ..................................................................................................... 486 17.1.2. Examples of Multiphase Systems ........................................................................................ 487 17.2. Choosing a General Multiphase Model ........................................................................................ 488 17.2.1. Approaches to Multiphase Modeling .................................................................................. 488 17.2.1.1.The Euler-Euler Approach ........................................................................................... 488 17.2.1.1.1.The VOF Model .................................................................................................. 488 17.2.1.1.2. The Mixture Model ............................................................................................ 489 17.2.1.1.3.The Eulerian Model ............................................................................................ 489 17.2.2. Model Comparisons ........................................................................................................... 489 17.2.2.1. Detailed Guidelines ................................................................................................... 490 17.2.2.1.1.The Effect of Particulate Loading ........................................................................ 490 17.2.2.1.2.The Significance of the Stokes Number .............................................................. 491 17.2.2.1.2.1. Examples .................................................................................................. 491 17.2.2.1.3. Other Considerations ........................................................................................ 492 17.2.3.Time Schemes in Multiphase Flow ....................................................................................... 492 17.2.4. Stability and Convergence .................................................................................................. 493 17.3.Volume of Fluid (VOF) Model Theory ............................................................................................ 494 17.3.1. Overview of the VOF Model ................................................................................................ 494 17.3.2. Limitations of the VOF Model .............................................................................................. 494 17.3.3. Steady-State and Transient VOF Calculations ....................................................................... 494 17.3.4.Volume Fraction Equation ................................................................................................... 495 17.3.4.1. The Implicit Formulation ............................................................................................ 495 17.3.4.2.The Explicit Formulation ............................................................................................. 496 17.3.4.3. Interpolation Near the Interface ................................................................................. 497 17.3.4.3.1. The Geometric Reconstruction Scheme ............................................................. 498 17.3.4.3.2.The Donor-Acceptor Scheme ............................................................................. 498 17.3.4.3.3.The Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) ..... 499 17.3.4.3.4.The Compressive Scheme and Interface-Model-based Variants ........................... 499 17.3.4.3.5. Bounded Gradient Maximization (BGM) ............................................................. 500 17.3.5. Material Properties ............................................................................................................. 500 17.3.6. Momentum Equation ......................................................................................................... 500 17.3.7. Energy Equation ................................................................................................................. 501 17.3.8. Additional Scalar Equations ................................................................................................ 501 17.3.9. Surface Tension and Adhesion ............................................................................................ 501 17.3.9.1. Surface Tension ......................................................................................................... 502 17.3.9.1.1. The Continuum Surface Force Model ................................................................. 502 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xviii of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.3.9.1.2.The Continuum Surface Stress Model ................................................................. 503 17.3.9.1.3. Comparing the CSS and CSF Methods ................................................................ 503 17.3.9.1.4.When Surface Tension Effects Are Important ...................................................... 504 17.3.9.2.Wall Adhesion ............................................................................................................ 504 17.3.9.3. Jump Adhesion .......................................................................................................... 505 17.3.10. Open Channel Flow .......................................................................................................... 505 17.3.10.1. Upstream Boundary Conditions ............................................................................... 506 17.3.10.1.1. Pressure Inlet .................................................................................................. 506 17.3.10.1.2. Mass Flow Rate ................................................................................................ 507 17.3.10.1.3.Volume Fraction Specification .......................................................................... 507 17.3.10.2. Downstream Boundary Conditions ........................................................................... 507 17.3.10.2.1. Pressure Outlet ................................................................................................ 507 17.3.10.2.2. Outflow Boundary ........................................................................................... 507 17.3.10.2.3. Backflow Volume Fraction Specification ........................................................... 508 17.3.10.3. Numerical Beach Treatment ..................................................................................... 508 17.3.11. Open Channel Wave Boundary Conditions ........................................................................ 509 17.3.11.1. Airy Wave Theory ..................................................................................................... 510 17.3.11.2. Stokes Wave Theories ............................................................................................... 511 17.3.11.3. Cnoidal/Solitary Wave Theory ................................................................................... 512 17.3.11.4. Choosing a Wave Theory .......................................................................................... 513 17.3.11.5. Superposition of Waves ............................................................................................ 516 17.3.11.6. Modeling of Random Waves Using Wave Spectrum ................................................... 516 17.3.11.6.1. Definitions ...................................................................................................... 517 17.3.11.6.2.Wave Spectrum Implementation Theory .......................................................... 517 17.3.11.6.2.1. Long-Crested Random Waves (Unidirectional) ......................................... 517 17.3.11.6.2.1.1. Pierson-Moskowitz Spectrum ......................................................... 517 17.3.11.6.2.1.2. JONSWAP Spectrum ....................................................................... 517 17.3.11.6.2.1.3. TMA Spectrum ............................................................................... 518 17.3.11.6.2.2. Short-Crested Random Waves (Multi-Directional) .................................... 518 17.3.11.6.2.2.1. Cosine-2s Power Function (Frequency Independent) ....................... 519 17.3.11.6.2.2.2. Hyperbolic Function (Frequency Dependent) ................................. 519 17.3.11.6.2.3. Superposition of Individual Wave Components Using the Wave Spectrum ........................................................................................................................... 520 17.3.11.6.3. Choosing a Wave Spectrum and Inputs ............................................................ 521 17.3.11.7. Nomenclature for Open Channel Waves .................................................................... 522 17.3.12. Coupled Level-Set and VOF Model .................................................................................... 524 17.3.12.1. Theory ..................................................................................................................... 524 17.3.12.1.1. Surface Tension Force ...................................................................................... 524 17.3.12.1.2. Re-initialization of the Level-set Function via the Geometrical Method ............. 525 17.3.12.2. Limitations .............................................................................................................. 527 17.4. Mixture Model Theory ................................................................................................................. 527 17.4.1. Overview ........................................................................................................................... 527 17.4.2. Limitations ......................................................................................................................... 528 17.4.3. Continuity Equation ........................................................................................................... 529 17.4.4. Momentum Equation ......................................................................................................... 529 17.4.5. Energy Equation ................................................................................................................. 529 17.4.6. Relative (Slip) Velocity and the Drift Velocity ........................................................................ 530 17.4.7.Volume Fraction Equation for the Secondary Phases ............................................................ 531 17.4.8. Granular Properties ............................................................................................................ 532 17.4.8.1. Collisional Viscosity .................................................................................................... 532 17.4.8.2. Kinetic Viscosity ......................................................................................................... 532 17.4.9. Granular Temperature ......................................................................................................... 532 xix Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.4.10. Solids Pressure ................................................................................................................. 533 17.4.11. Interfacial Area Concentration .......................................................................................... 533 17.4.11.1. Hibiki-Ishii Model ..................................................................................................... 534 17.4.11.2. Ishii-Kim Model ........................................................................................................ 535 17.4.11.3.Yao-Morel Model ...................................................................................................... 536 17.5. Eulerian Model Theory ................................................................................................................ 537 17.5.1. Overview of the Eulerian Model .......................................................................................... 537 17.5.2. Limitations of the Eulerian Model ........................................................................................ 538 17.5.3.Volume Fraction Equation ................................................................................................... 539 17.5.4. Conservation Equations ...................................................................................................... 539 17.5.4.1. Equations in General Form ......................................................................................... 539 17.5.4.1.1. Conservation of Mass ........................................................................................ 539 17.5.4.1.2. Conservation of Momentum .............................................................................. 540 17.5.4.1.3. Conservation of Energy ..................................................................................... 540 17.5.4.2. Equations Solved by ANSYS Fluent ............................................................................. 541 17.5.4.2.1. Continuity Equation .......................................................................................... 541 17.5.4.2.2. Fluid-Fluid Momentum Equations ...................................................................... 541 17.5.4.2.3. Fluid-Solid Momentum Equations ...................................................................... 541 17.5.4.2.4. Conservation of Energy ..................................................................................... 542 17.5.5. Interfacial Area Concentration ............................................................................................ 542 17.5.6. Interphase Exchange Coefficients ....................................................................................... 543 17.5.6.1. Fluid-Fluid Exchange Coefficient ................................................................................ 543 17.5.6.1.1. Schiller and Naumann Model ............................................................................. 544 17.5.6.1.2. Morsi and Alexander Model ............................................................................... 544 17.5.6.1.3. Symmetric Model .............................................................................................. 545 17.5.6.1.4. Grace et al. Model .............................................................................................. 546 17.5.6.1.5.Tomiyama et al. Model ....................................................................................... 547 17.5.6.1.6. Ishii Model ........................................................................................................ 547 17.5.6.1.7. Universal Drag Laws for Bubble-Liquid and Droplet-Gas Flows ........................... 547 17.5.6.1.7.1. Bubble-Liquid Flow .................................................................................. 548 17.5.6.1.7.2. Droplet-Gas Flow ...................................................................................... 549 17.5.6.2. Fluid-Solid Exchange Coefficient ................................................................................ 549 17.5.6.3. Solid-Solid Exchange Coefficient ................................................................................ 552 17.5.6.4. Drag Modification ...................................................................................................... 552 17.5.6.4.1. Brucato Correlation ........................................................................................... 553 17.5.7. Lift Force ............................................................................................................................ 553 17.5.7.1. Lift Coefficient Models ............................................................................................... 554 17.5.7.1.1. Moraga Lift Force Model .................................................................................... 554 17.5.7.1.2. Saffman-Mei Lift Force Model ............................................................................ 555 17.5.7.1.3. Legendre-Magnaudet Lift Force Model .............................................................. 555 17.5.7.1.4.Tomiyama Lift Force Model ................................................................................ 556 17.5.8. Wall Lubrication Force ........................................................................................................ 556 17.5.8.1.Wall Lubrication Models ............................................................................................. 556 17.5.8.1.1. Antal et al. Model .............................................................................................. 557 17.5.8.1.2.Tomiyama Model ............................................................................................... 557 17.5.8.1.3. Frank Model ...................................................................................................... 558 17.5.8.1.4. Hosokawa Model .............................................................................................. 558 17.5.9. Turbulent Dispersion Force ................................................................................................. 558 17.5.9.1. Models for Turbulent Dispersion Force ....................................................................... 559 17.5.9.1.1. Lopez de Bertodano Model ............................................................................... 559 17.5.9.1.2. Simonin Model .................................................................................................. 559 17.5.9.1.3. Burns et al. Model .............................................................................................. 560 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xx of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.5.9.1.4. Diffusion in VOF Model ...................................................................................... 560 17.5.9.2. Limiting Functions for the Turbulent Dispersion Force ................................................ 560 17.5.10.Virtual Mass Force ............................................................................................................. 561 17.5.11. Solids Pressure ................................................................................................................. 562 17.5.11.1. Radial Distribution Function ..................................................................................... 563 17.5.12. Maximum Packing Limit in Binary Mixtures ....................................................................... 564 17.5.13. Solids Shear Stresses ......................................................................................................... 565 17.5.13.1. Collisional Viscosity .................................................................................................. 565 17.5.13.2. Kinetic Viscosity ....................................................................................................... 565 17.5.13.3. Bulk Viscosity ........................................................................................................... 565 17.5.13.4. Frictional Viscosity ................................................................................................... 565 17.5.14. Granular Temperature ....................................................................................................... 567 17.5.15. Description of Heat Transfer .............................................................................................. 569 17.5.15.1. The Heat Exchange Coefficient ................................................................................. 569 17.5.15.1.1. Constant ......................................................................................................... 569 17.5.15.1.2. Nusselt Number .............................................................................................. 569 17.5.15.1.3. Ranz-Marshall Model ....................................................................................... 570 17.5.15.1.4.Tomiyama Model ............................................................................................. 570 17.5.15.1.5. Hughmark Model ............................................................................................ 570 17.5.15.1.6. Gunn Model .................................................................................................... 570 17.5.15.1.7. Two-Resistance Model ..................................................................................... 570 17.5.15.1.8. Fixed To Saturation Temperature ...................................................................... 571 17.5.15.1.9. User Defined ................................................................................................... 572 17.5.16. Turbulence Models ........................................................................................................... 572 17.5.16.1. k- ε Turbulence Models ............................................................................................. 572 17.5.16.1.1. k- ε Mixture Turbulence Model ......................................................................... 572 17.5.16.1.2. k- ε Dispersed Turbulence Model ..................................................................... 573 17.5.16.1.2.1. Assumptions .......................................................................................... 574 17.5.16.1.2.2. Turbulence in the Continuous Phase ....................................................... 574 17.5.16.1.2.3.Turbulence in the Dispersed Phase .......................................................... 575 17.5.16.1.3. k- ε Turbulence Model for Each Phase ............................................................... 575 17.5.16.1.3.1.Transport Equations ................................................................................ 575 17.5.16.2. RSM Turbulence Models ........................................................................................... 576 17.5.16.2.1. RSM Dispersed Turbulence Model .................................................................... 577 17.5.16.2.2. RSM Mixture Turbulence Model ....................................................................... 578 17.5.16.3. Turbulence Interaction Models ................................................................................. 578 17.5.16.3.1. Simonin et al. .................................................................................................. 579 17.5.16.3.1.1. Formulation in Dispersed Turbulence Models .......................................... 579 17.5.16.3.1.1.1. Continuous Phase .......................................................................... 579 17.5.16.3.1.1.2. Dispersed Phases ........................................................................... 580 17.5.16.3.1.2. Formulation in Per Phase Turbulence Models ........................................... 581 17.5.16.3.2. Troshko-Hassan ............................................................................................... 581 17.5.16.3.2.1.Troshko-Hassan Formulation in Mixture Turbulence Models ..................... 581 17.5.16.3.2.2. Troshko-Hassan Formulation in Dispersed Turbulence Models ................. 581 17.5.16.3.2.2.1. Continuous Phase .......................................................................... 581 17.5.16.3.2.2.2. Dispersed Phases ........................................................................... 582 17.5.16.3.2.3.Troshko-Hassan Formulation in Per-Phase Turbulence Models .................. 582 17.5.16.3.2.3.1. Continuous Phase .......................................................................... 582 17.5.16.3.2.3.2. Dispersed Phases ........................................................................... 582 17.5.16.3.3. Sato ................................................................................................................ 582 17.5.16.3.4. None ............................................................................................................... 583 17.5.17. Solution Method in ANSYS Fluent ..................................................................................... 583 xxi Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.5.17.1.The Pressure-Correction Equation ............................................................................. 583 17.5.17.2. Volume Fractions ..................................................................................................... 583 17.5.18. Dense Discrete Phase Model ............................................................................................. 583 17.5.18.1. Limitations .............................................................................................................. 584 17.5.18.2. Granular Temperature .............................................................................................. 585 17.5.19. Multi-Fluid VOF Model ...................................................................................................... 585 17.5.20. Wall Boiling Models .......................................................................................................... 587 17.5.20.1. Overview ................................................................................................................. 587 17.5.20.2. RPI Model ................................................................................................................ 587 17.5.20.3. Non-equilibrium Subcooled Boiling .......................................................................... 590 17.5.20.4. Critical Heat Flux ...................................................................................................... 590 17.5.20.4.1.Wall Heat Flux Partition .................................................................................... 591 17.5.20.4.2. Flow Regime Transition ................................................................................... 591 17.5.20.5. Interfacial Momentum Transfer ................................................................................. 592 17.5.20.5.1. Interfacial Area ................................................................................................ 592 17.5.20.5.2. Bubble and Droplet Diameters ........................................................................ 593 17.5.20.5.2.1. Bubble Diameter .................................................................................... 593 17.5.20.5.2.2. Droplet Diameter .................................................................................... 593 17.5.20.5.3. Interfacial Drag Force ...................................................................................... 594 17.5.20.5.4. Interfacial Lift Force ......................................................................................... 594 17.5.20.5.5.Turbulent Dispersion Force .............................................................................. 594 17.5.20.5.6. Wall Lubrication Force ..................................................................................... 594 17.5.20.5.7. Virtual Mass Force ........................................................................................... 594 17.5.20.6. Interfacial Heat Transfer ............................................................................................ 594 17.5.20.6.1. Interface to Liquid Heat Transfer ...................................................................... 594 17.5.20.6.2. Interface to Vapor Heat Transfer ....................................................................... 594 17.5.20.7. Mass Transfer ........................................................................................................... 595 17.5.20.7.1. Mass Transfer From the Wall to Vapor ............................................................... 595 17.5.20.7.2. Interfacial Mass Transfer .................................................................................. 595 17.5.20.8.Turbulence Interactions ............................................................................................ 595 17.6. Wet Steam Model Theory ............................................................................................................ 595 17.6.1. Overview of the Wet Steam Model ...................................................................................... 595 17.6.2. Limitations of the Wet Steam Model .................................................................................... 596 17.6.3.Wet Steam Flow Equations .................................................................................................. 596 17.6.4. Phase Change Model .......................................................................................................... 597 17.6.5. Built-in Thermodynamic Wet Steam Properties .................................................................... 598 17.6.5.1. Equation of State ....................................................................................................... 599 17.6.5.2. Saturated Vapor Line .................................................................................................. 600 17.6.5.3. Saturated Liquid Line ................................................................................................. 600 17.6.5.4. Mixture Properties ..................................................................................................... 600 17.7. Modeling Mass Transfer in Multiphase Flows ................................................................................ 600 17.7.1. Source Terms due to Mass Transfer ...................................................................................... 600 17.7.1.1. Mass Equation ........................................................................................................... 601 17.7.1.2. Momentum Equation ................................................................................................. 601 17.7.1.3. Energy Equation ........................................................................................................ 601 17.7.1.4. Species Equation ....................................................................................................... 601 17.7.1.5. Other Scalar Equations ............................................................................................... 601 17.7.2. Unidirectional Constant Rate Mass Transfer ......................................................................... 602 17.7.3. UDF-Prescribed Mass Transfer ............................................................................................. 602 17.7.4. Cavitation Models .............................................................................................................. 602 17.7.4.1. Limitations of the Cavitation Models .......................................................................... 603 17.7.4.1.1. Limitations of Cavitation with the VOF Model ..................................................... 603 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xxii of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 17.7.4.2.Vapor Transport Equation ........................................................................................... 604 17.7.4.3. Bubble Dynamics Consideration ................................................................................ 604 17.7.4.4. Singhal et al. Model .................................................................................................... 605 17.7.4.5. Zwart-Gerber-Belamri Model ..................................................................................... 607 17.7.4.6. Schnerr and Sauer Model ........................................................................................... 608 17.7.4.7. Turbulence Factor ...................................................................................................... 609 17.7.4.8. Additional Guidelines for the Cavitation Models ......................................................... 609 17.7.4.9. Extended Cavitation Model Capabilities ..................................................................... 611 17.7.4.9.1. Multiphase Cavitation Models ........................................................................... 611 17.7.4.9.2. Multiphase Species Transport Cavitation Model ................................................. 612 17.7.5. Evaporation-Condensation Model ....................................................................................... 612 17.7.5.1. Lee Model ................................................................................................................. 612 17.7.5.2.Thermal Phase Change Model .................................................................................... 615 17.7.6. Interphase Species Mass Transfer ........................................................................................ 616 17.7.6.1. Modeling Approach ................................................................................................... 617 17.7.6.1.1. Equilibrium Model ............................................................................................. 617 17.7.6.1.2.Two-Resistance Model ....................................................................................... 618 17.7.6.2. Species Mass Transfer Models ..................................................................................... 620 17.7.6.2.1. Raoult’s Law ...................................................................................................... 620 17.7.6.2.2. Henry’s Law ...................................................................................................... 620 17.7.6.2.3. Equilibrium Ratio .............................................................................................. 621 17.7.6.3. Mass Transfer Coefficient Models ................................................................................ 622 17.7.6.3.1. Constant ........................................................................................................... 622 17.7.6.3.2. Sherwood Number ............................................................................................ 622 17.7.6.3.3. Ranz-Marshall Model ......................................................................................... 622 17.7.6.3.4. Hughmark Model .............................................................................................. 623 17.7.6.3.5. User-Defined ..................................................................................................... 623 17.8. Modeling Species Transport in Multiphase Flows ......................................................................... 623 17.8.1. Limitations ......................................................................................................................... 624 17.8.2. Mass and Momentum Transfer with Multiphase Species Transport ....................................... 624 17.8.2.1. Source Terms Due to Heterogeneous Reactions .......................................................... 625 17.8.2.1.1. Mass Transfer .................................................................................................... 625 17.8.2.1.2. Momentum Transfer .......................................................................................... 625 17.8.2.1.3. Species Transfer ................................................................................................ 626 17.8.2.1.4. Heat Transfer ..................................................................................................... 626 17.8.3. The Stiff Chemistry Solver ................................................................................................... 627 17.8.4. Heterogeneous Phase Interaction ....................................................................................... 627 18. Solidification and Melting ................................................................................................................. 629 18.1. Overview .................................................................................................................................... 629 18.2. Limitations .................................................................................................................................. 630 18.3. Introduction ............................................................................................................................... 630 18.4. Energy Equation ......................................................................................................................... 630 18.5. Momentum Equations ................................................................................................................ 631 18.6.Turbulence Equations .................................................................................................................. 632 18.7. Species Equations ....................................................................................................................... 632 18.8. Back Diffusion ............................................................................................................................. 634 18.9. Pull Velocity for Continuous Casting ............................................................................................ 634 18.10. Contact Resistance at Walls ........................................................................................................ 636 18.11.Thermal and Solutal Buoyancy ................................................................................................... 636 19. Eulerian Wall Films ............................................................................................................................ 639 19.1. Introduction ............................................................................................................................... 639 19.2. Mass, Momentum, and Energy Conservation Equations for Wall Film ............................................. 640 xxiii Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 19.2.1. Film Sub-Models ................................................................................................................. 641 19.2.1.1. DPM Collection .......................................................................................................... 641 19.2.1.2. Splashing .................................................................................................................. 641 19.2.1.3. Film Separation .......................................................................................................... 641 19.2.1.3.1. Separation Criteria ............................................................................................ 641 19.2.1.3.1.1. Foucart Separation ................................................................................... 642 19.2.1.3.1.2. O’Rourke Separation ................................................................................. 642 19.2.1.3.1.3. Friedrich Separation ................................................................................. 642 19.2.1.4. Film Stripping ............................................................................................................ 643 19.2.1.5. Secondary Phase Accretion ........................................................................................ 644 19.2.1.6. Coupling of Wall Film with Mixture Species Transport ................................................. 645 19.2.2. Boundary Conditions .......................................................................................................... 645 19.2.3. Obtaining Film Velocity Without Solving the Momentum Equations .................................... 646 19.2.3.1. Shear-Driven Film Velocity ......................................................................................... 646 19.2.3.2. Gravity-Driven Film Velocity ....................................................................................... 646 19.3. Passive Scalar Equation for Wall Film ............................................................................................ 647 19.4. Numerical Schemes and Solution Algorithm ................................................................................ 648 19.4.1.Temporal Differencing Schemes .......................................................................................... 648 19.4.1.1. First-Order Explicit Method ........................................................................................ 648 19.4.1.2. First-Order Implicit Method ........................................................................................ 649 19.4.1.3. Second-Order Implicit Method ................................................................................... 649 19.4.2. Spatial Differencing Schemes .............................................................................................. 650 19.4.3. Solution Algorithm ............................................................................................................. 651 19.4.3.1. Steady Flow ............................................................................................................... 651 19.4.3.2. Transient Flow ........................................................................................................... 651 20. Electric Potential ............................................................................................................................... 653 20.1. Overview and Limitations ............................................................................................................ 653 20.2. Electric Potential Equation ........................................................................................................... 653 20.3. Energy Equation Source Term ...................................................................................................... 654 21. Solver Theory .................................................................................................................................... 655 21.1. Overview of Flow Solvers ............................................................................................................ 655 21.1.1. Pressure-Based Solver ......................................................................................................... 656 21.1.1.1. The Pressure-Based Segregated Algorithm ................................................................. 656 21.1.1.2.The Pressure-Based Coupled Algorithm ...................................................................... 657 21.1.2. Density-Based Solver .......................................................................................................... 658 21.2. General Scalar Transport Equation: Discretization and Solution ..................................................... 660 21.2.1. Solving the Linear System ................................................................................................... 662 21.3. Discretization .............................................................................................................................. 662 21.3.1. Spatial Discretization .......................................................................................................... 662 21.3.1.1. First-Order Upwind Scheme ....................................................................................... 663 21.3.1.2. Power-Law Scheme .................................................................................................... 663 21.3.1.3. Second-Order Upwind Scheme .................................................................................. 664 21.3.1.4. First-to-Higher Order Blending ................................................................................... 665 21.3.1.5. Central-Differencing Scheme ..................................................................................... 665 21.3.1.6. Bounded Central Differencing Scheme ....................................................................... 666 21.3.1.7. QUICK Scheme .......................................................................................................... 666 21.3.1.8.Third-Order MUSCL Scheme ....................................................................................... 667 21.3.1.9. Modified HRIC Scheme .............................................................................................. 667 21.3.1.10. High Order Term Relaxation ..................................................................................... 669 21.3.2. Temporal Discretization ...................................................................................................... 669 21.3.2.1. Implicit Time Integration ............................................................................................ 670 21.3.2.2. Bounded Second Order Implicit Time Integration ....................................................... 670 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xxiv of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 21.3.2.2.1. Limitations ........................................................................................................ 670 21.3.2.3. Explicit Time Integration ............................................................................................ 671 21.3.3. Evaluation of Gradients and Derivatives .............................................................................. 671 21.3.3.1. Green-Gauss Theorem ............................................................................................... 672 21.3.3.2. Green-Gauss Cell-Based Gradient Evaluation .............................................................. 672 21.3.3.3. Green-Gauss Node-Based Gradient Evaluation ............................................................ 672 21.3.3.4. Least Squares Cell-Based Gradient Evaluation ............................................................. 672 21.3.4. Gradient Limiters ................................................................................................................ 674 21.3.4.1. Standard Limiter ........................................................................................................ 674 21.3.4.2. Multidimensional Limiter ........................................................................................... 675 21.3.4.3. Differentiable Limiter ................................................................................................. 675 21.4. Pressure-Based Solver ................................................................................................................. 675 21.4.1. Discretization of the Momentum Equation .......................................................................... 676 21.4.1.1. Pressure Interpolation Schemes ................................................................................. 676 21.4.2. Discretization of the Continuity Equation ............................................................................ 677 21.4.2.1. Density Interpolation Schemes ................................................................................... 678 21.4.3. Pressure-Velocity Coupling ................................................................................................. 678 21.4.3.1. Segregated Algorithms .............................................................................................. 679 21.4.3.1.1. SIMPLE .............................................................................................................. 679 21.4.3.1.2. SIMPLEC ........................................................................................................... 680 21.4.3.1.2.1. Skewness Correction ................................................................................ 680 21.4.3.1.3. PISO .................................................................................................................. 680 21.4.3.1.3.1. Neighbor Correction ................................................................................. 680 21.4.3.1.3.2. Skewness Correction ................................................................................ 681 21.4.3.1.3.3. Skewness - Neighbor Coupling ................................................................. 681 21.4.3.2. Fractional-Step Method (FSM) .................................................................................... 681 21.4.3.3. Coupled Algorithm .................................................................................................... 681 21.4.3.3.1. Limitations ........................................................................................................ 682 21.4.4. Steady-State Iterative Algorithm ......................................................................................... 683 21.4.4.1. Under-Relaxation of Variables .................................................................................... 683 21.4.4.2. Under-Relaxation of Equations ................................................................................... 683 21.4.5.Time-Advancement Algorithm ............................................................................................ 683 21.4.5.1. Iterative Time-Advancement Scheme ......................................................................... 684 21.4.5.1.1.The Frozen Flux Formulation .............................................................................. 685 21.4.5.2. Non-Iterative Time-Advancement Scheme .................................................................. 686 21.5. Density-Based Solver ................................................................................................................... 688 21.5.1. Governing Equations in Vector Form ................................................................................... 688 21.5.2. Preconditioning ................................................................................................................. 689 21.5.3. Convective Fluxes ............................................................................................................... 691 21.5.3.1. Roe Flux-Difference Splitting Scheme ......................................................................... 691 21.5.3.2. AUSM Scheme ......................................................................................................... 691 21.5.3.3. Low Diffusion Roe Flux Difference Splitting Scheme ................................................... 692 21.5.4. Steady-State Flow Solution Methods ................................................................................... 692 21.5.4.1. Explicit Formulation ................................................................................................... 693 21.5.4.1.1. Implicit Residual Smoothing .............................................................................. 693 21.5.4.2. Implicit Formulation .................................................................................................. 694 21.5.4.2.1. Convergence Acceleration for Stretched Meshes ................................................ 694 21.5.5. Unsteady Flows Solution Methods ...................................................................................... 695 21.5.5.1. Explicit Time Stepping ............................................................................................... 695 21.5.5.2. Implicit Time Stepping (Dual-Time Formulation) ......................................................... 695 21.6. Pseudo Transient Under-Relaxation ............................................................................................. 697 21.6.1. Automatic Pseudo Transient Time Step ............................................................................... 697 xxv Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 21.7. Multigrid Method ........................................................................................................................ 699 21.7.1. Approach ........................................................................................................................... 699 21.7.1.1.The Need for Multigrid ............................................................................................... 699 21.7.1.2.The Basic Concept in Multigrid ................................................................................... 700 21.7.1.3. Restriction and Prolongation ...................................................................................... 700 21.7.1.4. Unstructured Multigrid .............................................................................................. 701 21.7.2. Multigrid Cycles .................................................................................................................. 701 21.7.2.1. The V and W Cycles .................................................................................................... 701 21.7.3. Algebraic Multigrid (AMG) .................................................................................................. 705 21.7.3.1. AMG Restriction and Prolongation Operators ............................................................. 705 21.7.3.2. AMG Coarse Level Operator ....................................................................................... 706 21.7.3.3. The F Cycle ................................................................................................................ 706 21.7.3.4. The Flexible Cycle ...................................................................................................... 706 21.7.3.4.1.The Residual Reduction Rate Criteria .................................................................. 707 21.7.3.4.2. The Termination Criteria .................................................................................... 708 21.7.3.5.The Coupled and Scalar AMG Solvers .......................................................................... 708 21.7.3.5.1. Gauss-Seidel ..................................................................................................... 709 21.7.3.5.2. Incomplete Lower Upper (ILU) ........................................................................... 709 21.7.4. Full-Approximation Storage (FAS) Multigrid ......................................................................... 710 21.7.4.1. FAS Restriction and Prolongation Operators ............................................................... 711 21.7.4.2. FAS Coarse Level Operator ......................................................................................... 711 21.8. Hybrid Initialization ..................................................................................................................... 711 21.9. Full Multigrid (FMG) Initialization ................................................................................................. 713 21.9.1. Overview of FMG Initialization ............................................................................................ 713 21.9.2. Limitations of FMG Initialization .......................................................................................... 714 22. Adapting the Mesh ............................................................................................................................ 717 22.1. Static Adaption Process ............................................................................................................... 717 22.1.1. Hanging Node Adaption ..................................................................................................... 717 22.1.1.1. Hanging Node Refinement ......................................................................................... 718 22.1.1.2. Hanging Node Coarsening ......................................................................................... 719 22.2. Boundary Adaption ..................................................................................................................... 719 22.3. Gradient Adaption ...................................................................................................................... 721 22.3.1. Gradient Adaption Approach .............................................................................................. 721 22.3.2. Example of Steady Gradient Adaption ................................................................................. 723 22.4. Isovalue Adaption ....................................................................................................................... 725 22.5. Region Adaption ......................................................................................................................... 727 22.5.1. Defining a Region ............................................................................................................... 727 22.5.2. Region Adaption Example .................................................................................................. 728 22.6. Volume Adaption ........................................................................................................................ 729 22.6.1.Volume Adaption Approach ................................................................................................ 729 22.6.2.Volume Adaption Example .................................................................................................. 730 22.7.Yplus/Ystar Adaption ................................................................................................................... 731 22.7.1.Yplus/Ystar Adaption Approach .......................................................................................... 731 22.8. Anisotropic Adaption .................................................................................................................. 733 22.9. Geometry-Based Adaption .......................................................................................................... 733 22.9.1. Geometry-Based Adaption Approach .................................................................................. 734 22.9.1.1. Node Projection ......................................................................................................... 734 22.9.1.2. Example of Geometry-Based Adaption ....................................................................... 736 22.10. Registers ................................................................................................................................... 739 22.10.1. Adaption Registers ........................................................................................................... 739 22.10.2. Mask Registers .................................................................................................................. 740 23. Reporting Alphanumeric Data .......................................................................................................... 743 Release 17.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information xxvi of ANSYS, Inc. and its subsidiaries and affiliates. Theory Guide 23.1. Fluxes Through Boundaries ......................................................................................................... 743 23.2. Forces on Boundaries .................................................................................................................. 744 23.2.1. Computing Forces, Moments, and the Center of Pressure ..................................................... 744 23.3. Surface Integration ..................................................................................................................... 746 23.3.1. Computing Surface Integrals .............................................................................................. 747 23.3.1.1. Area .......................................................................................................................... 747 23.3.1.2. Integral ...................................................................................................................... 748 23.3.1.3. Area-Weighted Average ............................................................................................. 748 23.3.1.4. Custom Vector Based Flux .......................................................................................... 748 23.3.1.5. Custom Vector Flux .................................................................................................... 748 23.3.1.6. Custom Vector Weighted Average .............................................................................. 748 23.3.1.7. Flow Rate ................................................................................................................... 748 23.3.1.8. Mass Flow Rate .......................................................................................................... 749 23.3.1.9. Mass-Weighted Average ............................................................................................ 749 23.3.1.10. Sum of Field Variable ................................................................................................ 749 23.3.1.11. Facet Average .......................................................................................................... 750 23.3.1.12. Facet Minimum ........................................................................................................ 750 23.3.1.13. Facet Maximum ....................................................................................................... 750 23.3.1.14.Vertex Average ......................................................................................................... 750 23.3.1.15. Vertex Minimum ...................................................................................................... 750 23.3.1.16.Vertex Maximum ...................................................................................................... 750 23.3.1.17. Standard-Deviation .................................................................................................. 750 23.3.1.18. Uniformity Index ...................................................................................................... 751 23.3.1.19. Volume Flow Rate .................................................................................................... 751 23.4. Volume Integration ..................................................................................................................... 752 23.4.1. Computing Volume Integrals .............................................................................................. 752 23.4.1.1.Volume ...................................................................................................................... 752 23.4.1.2. Sum .......................................................................................................................... 753 23.4.1.3. Sum*2Pi .................................................................................................................... 753 23.4.1.4. Volume Integral ......................................................................................................... 753 23.4.1.5.Volume-Weighted Average ......................................................................................... 753 23.4.1.6. Mass-Weighted Integral ............................................................................................. 753 23.4.1.7. Mass .......................................................................................................................... 754 23.4.1.8. Mass-Weighted Average ............................................................................................ 754 A. Nomenclature ....................................................................................................................................... 755 Bibliography ............................................................................................................................................. 759 Index ........................................................................................................................................................ 789
好例子网口号:伸出你的我的手 — 分享!
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论