在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → MATLAB Deep Learning.pdf

MATLAB Deep Learning.pdf

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:3.71M
  • 下载次数:18
  • 浏览次数:224
  • 发布时间:2020-03-07
  • 实例类别:一般编程问题
  • 发 布 人:robot666
  • 文件格式:.pdf
  • 所需积分:2
 相关标签:

实例介绍

【实例简介】

 

开始使用matlab进行深入学习,使用ai进行深入入门。在这本书中,你从机器学习基础开始,然后转向神经网络,深入学习,然后卷积神经网络。在基础知识和应用程序的混合中,Matlab Deep Learning使用Matlab作为本书示例和案例研究的基础编程语言和工具。              有了这本书,您将能够解决当今现实世界中的一些大数据、智能机器人和其他复杂数据问题。您将看到深入学习对于现代智能数据分析和使用来说是机器学习的一个复杂和更智能的方面。
MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence
Phil Kim
Seoul, Soul-t'ukpyolsi, Korea(Republic of)
ISBN-13(pbk:978-1-48422844-9
ISBN-13( electronic:978-1-4842-2845-6
DOI10.1007/978-1-4842-2845-6
Library of Congress Control Number: 2017944429
Copyright o 2017 by Phil Kim
This work is subject to copyright All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed
Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the tradema
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
espect to the material contained herein
Cover image designed by Freepik
Managing Director: Welmoed Spahr
Editorial Director: Todd green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Jonah Lissner
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley
Distributed to the book trade worldwide by Springer Science Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax(201)348-4505, e-mail
orders-ny@springer-sbm.comorvisitwww.springeronline.comApressMedia,LlcisaCalifornia
LLC and the sole member (owner) is Springer Science Business Media Finance Inc( SSBM Finance Inc)
SSBM Finance Inc is a Delaware corporation
Forinformationontranslationspleasee-mailrights@apress.com,orvisithttp://www.apress.com/
rights-permissions
Apress titles may be purchased in bulk for academic, corporate, or promotional use eBook versions
and licenses are also available for most titles for more information reference our print and ebook
BulkSaleswebpageathttp://www.apress.com/bulk-sales
Any source code or other supplementary material referenced by the author in this book is available to
readersongIthubviathebooksproductpagelocatedatwww.apress.com/9781484228449.Formore
detailedinformationpleasevisithttp://www.apress.com/source-code
Printed on acid-free paper

Contents at a glance
About the author
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
X
About the technical reviewer
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■口■■■■■口■■■■■口■
XI
Acknowledgments,…
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
XII
Introduction
XV
Chapter 1: Machine Learning
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■口■■■■■■■■■■■■■■■■■口■■
Chapter 2: Neural Network.m
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
g19
Chapter 3: Training of Multi-Layer Neural Network
■■■■■■■■■■■■■■■■■■■■■■
53
Chapter 4: Neural Network and classification.
■■■■■■■■■■■■■■■■■■■■■■■■■■■■
81
Chapter5: Deep Learning…,,…,,,,,,,,,103
Chapter 6: Convolutional Neural Network
121
Index
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
149

Contents
About the author
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
X
About the technical reviewer
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■口■■■■■口■■■■■口■
XI
Acknowledgments,,,,…,…,,,,,算,mxii
Introduction
XV
Chapter 1: Machine Learning
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■口■■■■■■■■■■■■■■■■■口■■
What Is Machine Learning?
2
Challenges with Machine Learning……4
0 verfitting……
6
Confronting Overfitting.
10
Types of Machine Learning
12
Classification and Regression............................ 14
Summary
17
Chapter 2: Neural Network.at
■■■■■■■■■■■■■■■■■■■口■■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
19
Nodes of a neural network
Layers of Neural Network
Supervised Learning of a Neural Network
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0279
Training of a single-layer Neural Network: Delta rule
Generalized Delta rule
32

CONTENTS
SGD, Batch and mini batch mm 34
Stochastic gradient descent
34
Batch….35
Mini batch
36
Example: Delta Rule
37
Implementation of the SGD Method
38
Implementation of the Batch Method
Comparison of the SGd and the batch
Limitations of single-Layer Neural Networks
35
Summary
.50
cHapter 3: Training of Multi-Layer Neural Network eamamanman 53
Back-Propagation Algorithm
54
Example: Back-Propagation
60
XOR Problem
Momentum
Cost Function and Learning Rule .
EXample: Cross Entropy function....,,,…,…,…………73
Cross Entropy Function
74
Comparison of Cost Functions
76
Summary…,,
Chapter 4: Neural Network and classification mmmmmmmmmm. 81
Binary classification
81
Multiclass classification
,86
Example: Multiclass Classification
93
Summary
102

CONTENtS
Chapter 5: Deep Learning
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
103
Improvement of the Deep Neural Network.mmmmmmammmmmmmmn 105
Vanishing gradient.…
0 befitting…
107
Computational Load
EXample: Relu and dropout
109
RelU function m110
Dropout
114
Summary…,…,
120
Chapter6: Convolutional neural network,,…,……,121
Architecture of convNet mmmm. 121
Convolution Layer
124
Pooling Layer.
130
EXample: MNIST
131
Summary
147
Index…u149

About the author
Phil Kim, PhD is an experienced MAtlAB programmer and user. He also works
with algorithms of large datasets drawn from Al, and Machine Learning. He
has worked at the Korea Aerospace Research Institute as a Senior researcher
There, his main task was to develop autonomous flight algorithms and onboard
software for unmanned aerial vehicles. he developed an onscreen keyboard
program named"Clickey"during his period in the PhD program, which served
as a bridge to bring him to his current assignment as a Senior Research Officer at
the National rehabilitation research institute of Korea

About the technical
Reviewer
Jonah lissner is a research scientist advancing phd and dsc programs
scholarships, applied projects, and academic journal publications in theoretical
physics, power engineering, complex systems, metamaterials, geophysics,
and computation theory. He has strong cognitive ability in empiricism and
scientific reason for the purpose of hypothesis building theory learning, and
mathematical and axiomatic modeling and testing for abstract problem solving
His dissertations, research publications and projects, CV, journals, blog, novels,
andsystemarelistedathttp://lissneRresearch.weebly.com

Acknowledgments
Although i assume that the acknowledgements of most books are not relevant
to readers, I would like to offer some words of appreciation, as the following
people are very special to me. First, I am deeply grateful to those I studied
DeepLearningwithattheModulabs(www.modulabs.co.kr).Iowethemfor
teaching me most of what I know about Deep Learning. In addition, I offer my
heartfelt thanks to director s Kim of modulabs who allowed me to work in such
a wonderful place from spring to summer. I was able to finish the most of this
book at modulars
I also thank president Jeon from Bogonet, Dr H You, Dr Y.S. Kang, and
Mr..H Lee from KaRl, director S. Kim from Modulabs, and mr W. Lee and
Mr S Hwang from J. MARPLE. They devoted their time and efforts to reading and
revising the draft of this book. Although they gave me a hard time throughout the
revision process, I finished it without regret
Lastly, my deepest thanks and love to my wife, who is the best woman I have
ever met, and children, who never get bored of me and share precious memories
with me


【实例截图】


【核心代码】

标签:

实例下载地址

MATLAB Deep Learning.pdf

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警