实例介绍
【实例简介】svmcls 2.0文本自动分类器支持中文和英文文档,特征选择方式包括全局和按类别选取,概率估算方法支持基于文档(布尔)统计和基于词频统计,支持三种特征加权方式,特征评估函数包括信息增益、互信息、期望交叉熵、X^2统计,文本证据权重,右半信息增益,分类方法包括支持向量机SVM和K近邻KNN,由李荣陆老师于2004年开发完成。
网上流传很多版本的svmcls文本分类程序,但几乎全部都是不能编译通过的,有些是缺少xercesc文件夹,有些是缺少xerces-c_2_2_0D.dll,有些是缺少分词程序和数据导致分词程序初始化失败,还有的缺少直接训练测试的语料库。
【实例截图】
【核心代码】
标签:
相关软件
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论