实例介绍
【实例截图】
【核心代码】close all;
clc;
%%算法实现
%step1、初始化训练集、测试集、K值
%创建一个三维矩阵,二维表示同一类下的二维坐标点,第三维表示类别
trainData1=[0 0;0.1 0.3;0.2 0.1;0.2 0.2];%第一类训练数据
trainData2=[1 0;1.1 0.3;1.2 0.1;1.2 0.2];%第二类训练数据
trainData3=[0 1;0.1 1.3;0.2 1.1;0.2 1.2];%第三类训练数据
trainData(:,:,1)=trainData1;%设置第一类测试数据
trainData(:,:,2)=trainData2;%设置第二类测试数据
trainData(:,:,3)=trainData3;%设置第三类测试数据
trainDim=size(trainData);%获取训练集的维数
testData=[1.6 0.3];%设置1个测试点
K=7;
%%分别计算测试集中各个点与每个训练集中的点的欧氏距离
%把测试点扩展成矩阵
testData_rep=repmat(testData,4,1);
%设置三个二维矩阵存放测试集与测试点的扩展矩阵的差值平方
%diff1=zero(trainDim(1),trianDim(2));
%diff2=zero(trainDim(1),trianDim(2));
%diff3=zero(trainDim(1),trianDim(2));
for i=1:trainDim(3)
diff1=(trainData(:,:,1)-testData_rep).^2;
diff2=(trainData(:,:,2)-testData_rep).^2;
diff3=(trainData(:,:,3)-testData_rep).^2;
end
%设置三个一维数组存放欧式距离
distance1=(diff1(:,1) diff1(:,2)).^0.5;
distance2=(diff2(:,1) diff2(:,2)).^0.5;
distance3=(diff3(:,1) diff3(:,2)).^0.5;
%将三个一维数组合成一个二维矩阵
temp=[distance1 distance2 distance3];
%将这个二维矩阵转换为一维数组
distance=reshape(temp,1,3*4);
%对距离进行排序
distance_sort=sort(distance);
%用一个循环寻找最小的K个距离里面那个类里出现的频率最高,并返回该类
num1=0;%第一类出现的次数
num2=0;%第二类出现的次数
num3=0;%第三类出现的次数
sum=0;%sum1,sum2,sum3的和
for i=1:K
for j=1:4
if distance1(j)==distance_sort(i)
num1=num1 1;
end
if distance2(j)==distance_sort(i)
num2=num2 1;
end
if distance3(j)==distance_sort(i)
num3=num3 1;
end
end
sum=num1 num2 num3;
if sum>=K
break;
end
end
class=[num1 num2 num3];
classname=find(class(1,:)==max(class));
fprintf('测试点(%f %f)属于第%d类',testData(1),testData(2),classname);
%%使用绘图将训练集点和测试集点绘画出来
figure(1);
hold on;
for i=1:4
plot(trainData1(i,1),trainData1(i,2),'*');
plot(trainData2(i,1),trainData2(i,2),'o');
plot(trainData3(i,1),trainData3(i,2),'>');
end
plot(testData(1),testData(2),'x');
text(0.1,0.1,'第一类');
text(1.1,0.1,'第二类');
text(0.1,1,'第三类');
标签: 算法
相关软件
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论