实例介绍
【实例简介】基于matlab的扩展卡尔曼滤波
【实例截图】
【核心代码】
【实例截图】

【核心代码】
N = 50; %计算连续N个时刻
n=3; %状态维度
q=0.1; %过程标准差
r=0.2; %测量标准差
Q=q^2*eye(n); %过程方差
R=r^2; %测量值的方差
f=@(x)[x(2);x(3);0.05*x(1)*(x(2) x(3))]; %状态方程
h=@(x)[x(1);x(2);x(3)]; %测量方程
s=[0;0;1]; %初始状态
%初始化状态
x=s q*randn(3,1);
P = eye(n);
xV = zeros(n,N);
sV = zeros(n,N);
zV = zeros(n,N);
for k=1:N
z = h(s) r*randn;
sV(:,k)= s; %实际状态
zV(:,k) = z; %状态测量值
[x1,A]=jaccsd(f,x); %计算f的雅可比矩阵,其中x1对应黄金公式line2
P=A*P*A' Q; %过程方差预测,对应line3
[z1,H]=jaccsd(h,x1); %计算h的雅可比矩阵
K=P*H'*inv(H*P*H' R); %卡尔曼增益,对应line4
x=x1 K*(z-z1); %状态EKF估计值,对应line5
P=P-K*H*P; %EKF方差,对应line6
xV(:,k) = x; %save
s = f(s) q*randn(3,1); %update process
end
好例子网口号:伸出你的我的手 — 分享!
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论