实例介绍
【实例简介】R语言实现的第四章
解题思想:
矩估计:用样本的一阶原点矩估计总体均值;用样本的二阶中心矩估计总体方差。
如果总体的分布已知,那么总体的均值和方差就可以用分布中的参数表示,再等于样本的一阶原点矩和二阶中心矩,可以计算出总体分布中的参数。
已知分布密度,求随机变量的期望,该期望值等于样本的均值:
> x <- c(0.1, 0.2, 0.9, 0.8, 0.7, 0.7)
> (2 * mean(x) - 1)/(1 - mean(x))
[1] 0.3076923
然后极大似然估计是:
【实例截图】
【核心代码】
.
└── R语言实现的第四章.docx
0 directories, 1 file
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论