在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → Probability in electrical engineering and computer scicence

Probability in electrical engineering and computer scicence

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:9.74M
  • 下载次数:3
  • 浏览次数:56
  • 发布时间:2022-12-16
  • 实例类别:一般编程问题
  • 发 布 人:芦苇覅鞥
  • 文件格式:.pdf
  • 所需积分:2
 相关标签: Computer Engine and COM CTR

实例介绍

【实例简介】Probability in electrical engineering and computer scicence

【实例截图】

【核心代码】

Contents
1 PageRank: A ................................................................ 1
1.1 Model................................................................ 1
1.2 Markov Chain ....................................................... 3
1.2.1 General Definition ....................................... 4
1.2.2 Distribution After n Steps and Invariant Distribution .. 4
1.3 Analysis ............................................................. 5
1.3.1 Irreducibility and Aperiodicity.......................... 5
1.3.2 Big Theorem ............................................. 6
1.3.3 Long-Term Fraction of Time ............................ 7
1.4 Illustrations.......................................................... 8
1.5 Hitting Time......................................................... 10
1.5.1 Mean Hitting Time....................................... 10
1.5.2 Probability of Hitting a State Before Another.......... 11
1.5.3 FSE for Markov Chain .................................. 12
1.6 Summary ............................................................ 13
1.6.1 Key Equations and Formulas............................ 14
1.7 References........................................................... 14
1.8 Problems ............................................................ 14
2 PageRank: B ................................................................ 21
2.1 Sample Space ....................................................... 21
2.2 Laws of Large Numbers for Coin Flips............................ 23
2.2.1 Convergence in Probability.............................. 24
2.2.2 Almost Sure Convergence............................... 25
2.3 Laws of Large Numbers for i.i.d. RVs ............................. 27
2.3.1 Weak Law of Large Numbers ........................... 28
2.3.2 Strong Law of Large Numbers .......................... 28
2.4 Law of Large Numbers for Markov Chains ....................... 30
2.5 Proof of Big Theorem .............................................. 32
2.5.1 Proof of Theorem 1.1 (a) ................................ 32
2.5.2 Proof of Theorem 1.1 (b) ................................ 33
2.5.3 Periodicity................................................ 34
2.6 Summary ............................................................ 36
2.6.1 Key Equations and Formulas............................ 36
xv
xvi Contents
2.7 References........................................................... 37
2.8 Problems ............................................................ 37
3 Multiplexing: A ............................................................. 39
3.1 Sharing Links ....................................................... 39
3.2 Gaussian Random Variable and CLT .............................. 42
3.2.1 Binomial and Gaussian .................................. 45
3.2.2 Multiplexing and Gaussian .............................. 46
3.2.3 Confidence Intervals ..................................... 46
3.3 Buffers............................................................... 48
3.3.1 Markov Chain Model of Buffer ......................... 49
3.3.2 Invariant Distribution .................................... 50
3.3.3 Average Delay ........................................... 51
3.3.4 A Note About Arrivals................................... 53
3.3.5 Little’s Law .............................................. 53
3.4 Multiple Access..................................................... 54
3.5 Summary ............................................................ 55
3.5.1 Key Equations and Formulas............................ 56
3.6 References........................................................... 56
3.7 Problems ............................................................ 56
4 Multiplexing: B ............................................................. 59
4.1 Characteristic Functions ............................................ 59
4.2 Proof of CLT (Sketch) .............................................. 60
4.3 Moments of N (0,1) ............................................... 61
4.4 Sum of Squares of 2 i.i.d. N (0,1) ................................ 62
4.5 Two Applications of Characteristic Functions..................... 63
4.5.1 Poisson as a Limit of Binomial ......................... 63
4.5.2 Exponential as Limit of Geometric ..................... 64
4.6 Error Function....................................................... 65
4.7 Adaptive Multiple Access .......................................... 66
4.8 Summary ............................................................ 68
4.8.1 Key Equations and Formulas............................ 68
4.9 References........................................................... 68
4.10 Problems ............................................................ 68
5 Networks: A ................................................................. 71
5.1 Spreading Rumors .................................................. 71
5.2 Cascades............................................................. 72
5.3 Seeding the Market ................................................. 73
5.4 Manufacturing of Consent.......................................... 74
5.5 Polarization.......................................................... 76
5.6 M/M/1 Queue...................................................... 78
5.7 Network of Queues ................................................. 81
5.8 Optimizing Capacity................................................ 84
5.9 Internet and Network of Queues ................................... 87
Contents xvii
5.10 Product-Form Networks ............................................ 87
5.10.1 Example .................................................. 89
5.11 References........................................................... 89
5.12 Problems ............................................................ 90
6 Networks—B ................................................................ 93
6.1 Social Networks..................................................... 93
6.2 Continuous-Time Markov Chains.................................. 95
6.2.1 Two-State Markov Chain................................ 96
6.2.2 Three-State Markov Chain .............................. 100
6.2.3 General Case ............................................. 103
6.2.4 Uniformization........................................... 106
6.2.5 Time Reversal............................................ 108
6.3 Product-Form Networks ............................................ 108
6.4 Proof of Theorem 5.7 ............................................... 110
6.5 References........................................................... 113
7 Digital Link—A............................................................. 115
7.1 Digital Link ......................................................... 115
7.2 Detection and Bayes’ Rule ......................................... 116
7.2.1 Bayes’ Rule .............................................. 116
7.2.2 Circumstances vs. Causes ............................... 118
7.2.3 MAP and MLE........................................... 118
7.2.4 Binary Symmetric Channel.............................. 119
7.3 Huffman Codes ..................................................... 121
7.4 Gaussian Channel................................................... 124
7.4.1 BPSK ..................................................... 125
7.5 Multidimensional Gaussian Channel .............................. 127
7.5.1 MLE in Multidimensional Case......................... 128
7.6 Hypothesis Testing.................................................. 128
7.6.1 Formulation .............................................. 129
7.6.2 Solution .................................................. 130
7.6.3 Examples ................................................. 131
7.7 Summary ............................................................ 137
7.7.1 Key Equations and Formulas............................ 138
7.8 References........................................................... 138
7.9 Problems ............................................................ 138
8 Digital Link—B ............................................................. 143
8.1 Proof of Optimality of the Huffman Code......................... 143
8.2 Proof of Neyman–Pearson Theorem 7.4........................... 144
8.3 Jointly Gaussian Random Variables................................ 145
8.3.1 Density of Jointly Gaussian Random Variables ........ 146
8.4 Elementary Statistics................................................ 149
8.4.1 Zero-Mean? .............................................. 149
8.4.2 Unknown Variance....................................... 151
xviii Contents
8.4.3 Difference of Means ..................................... 152
8.4.4 Mean in Hyperplane?.................................... 153
8.4.5 ANOVA .................................................. 154
8.5 LDPC Codes ........................................................ 154
8.6 Summary ............................................................ 160
8.6.1 Key Equations and Formulas............................ 161
8.7 References........................................................... 161
8.8 Problems ............................................................ 161
9 Tracking—A ................................................................ 163
9.1 Examples ............................................................ 163
9.2 Estimation Problem................................................. 163
9.3 Linear Least Squares Estimates .................................... 165
9.3.1 Projection................................................. 168
9.4 Linear Regression................................................... 170
9.5 A Note on Overfitting............................................... 172
9.6 MMSE............................................................... 173
9.6.1 MMSE for Jointly Gaussian............................. 178
9.7 Vector Case.......................................................... 180
9.8 Kalman Filter........................................................ 182
9.8.1 The Filter................................................. 183
9.8.2 Examples ................................................. 184
9.9 Summary ............................................................ 187
9.9.1 Key Equations and Formulas............................ 187
9.10 References........................................................... 187
9.11 Problems ............................................................ 187
10 Tracking: B.................................................................. 193
10.1 Updating LLSE ..................................................... 193
10.2 Derivation of Kalman Filter ........................................ 195
10.3 Properties of Kalman Filter......................................... 197
10.3.1 Observability............................................. 198
10.3.2 Reachability.............................................. 200
10.4 Extended Kalman Filter ............................................ 200
10.4.1 Examples ................................................. 201
10.5 Summary ............................................................ 203
10.5.1 Key Equations and Formulas............................ 204
10.6 References........................................................... 204
11 Speech Recognition: A ..................................................... 205
11.1 Learning: Concepts and Examples................................. 205
11.2 Hidden Markov Chain .............................................. 206
11.3 Expectation Maximization and Clustering......................... 209
11.3.1 A Simple Clustering Problem ........................... 209
11.3.2 A Second Look........................................... 210
Contents xix
11.4 Learning: Hidden Markov Chain................................... 212
11.4.1 HEM...................................................... 212
11.4.2 Training the Viterbi Algorithm.......................... 213
11.5 Summary ............................................................ 213
11.5.1 Key Equations and Formulas............................ 213
11.6 References........................................................... 213
11.7 Problems ............................................................ 214
12 Speech Recognition: B ..................................................... 217
12.1 Online Linear Regression........................................... 217
12.2 Theory of Stochastic Gradient Projection ......................... 219
12.2.1 Gradient Projection ...................................... 220
12.2.2 Stochastic Gradient Projection .......................... 224
12.2.3 Martingale Convergence................................. 226
12.3 Big Data ............................................................. 226
12.3.1 Relevant Data ............................................ 227
12.3.2 Compressed Sensing..................................... 232
12.3.3 Recommendation Systems .............................. 236
12.4 Deep Neural Networks ............................................. 237
12.4.1 Calculating Derivatives .................................. 239
12.5 Summary ............................................................ 240
12.5.1 Key Equations and Formulas............................ 240
12.6 References........................................................... 240
12.7 Problems ............................................................ 240
13 Route Planning: A .......................................................... 243
13.1 Model................................................................ 243
13.2 Formulation 1: Pre-planning ....................................... 244
13.3 Formulation 2: Adapting ........................................... 245
13.4 Markov Decision Problem.......................................... 247
13.4.1 Examples ................................................. 248
13.5 Infinite Horizon ..................................................... 253
13.6 Summary ............................................................ 254
13.6.1 Key Equations and Formulas............................ 254
13.7 References........................................................... 254
13.8 Problems ............................................................ 254
14 Route Planning: B .......................................................... 259
14.1 LQG Control ........................................................ 259
14.1.1 Letting N → ∞ ......................................... 261
14.2 LQG with Noisy Observations ..................................... 262
14.2.1 Letting N → ∞ ......................................... 264
14.3 Partially Observed MDP............................................ 265
14.3.1 Example: Searching for Your Keys ..................... 265
14.4 Summary ............................................................ 267
14.4.1 Key Equations and Formulas............................ 267
xx Contents
14.5 References........................................................... 267
14.6 Problems ............................................................ 268
15 Perspective and Complements ............................................ 271
15.1 Inference............................................................. 271
15.2 Sufficient Statistic................................................... 272
15.2.1 Interpretation............................................. 274
15.3 Infinite Markov Chains ............................................. 274
15.3.1 Lyapunov–Foster Criterion.............................. 276
15.4 Poisson Process ..................................................... 277
15.4.1 Definition................................................. 277
15.4.2 Independent Increments ................................. 277
15.4.3 Number of Jumps ........................................ 279
15.5 Boosting ............................................................. 280
15.6 Multi-Armed Bandits ............................................... 282
15.7 Capacity of BSC .................................................... 284
15.8 Bounds on Probabilities ............................................ 288
15.8.1 Applying the Bounds to Multiplexing .................. 290
15.9 Martingales.......................................................... 294
15.9.1 Definitions................................................ 294
15.9.2 Examples ................................................. 295
15.9.3 Law of Large Numbers ................................. 300
15.9.4 Wald’s Equality .......................................... 301
15.10 Summary ............................................................ 302
15.10.1 Key Equations and Formulas............................ 302
15.11 References........................................................... 302
15.12 Problems ............................................................ 303
Correction to: Probability in Electrical Engineering
and Computer Science........................................................... C1
Correction to: Probability in Electrical Engineering
and Computer Science (Funding Information) ............................... C3
A Elementary Probability .................................................... 309
A.1 Symmetry ........................................................... 309
A.2 Conditioning ........................................................ 310
A.3 Common Confusion ................................................ 312
A.4 Independence........................................................ 313
A.5 Expectation.......................................................... 315
A.6 Variance ............................................................. 318
A.7 Inequalities .......................................................... 320
A.8 Law of Large Numbers ............................................. 320
A.9 Covariance and Regression......................................... 321
A.10 Why Do We Need a More Sophisticated Formalism?............. 323
A.11 References........................................................... 324
A.12 Solved Problems .................................................... 324
Contents xxi
B Basic Probability............................................................ 329
B.1 General Framework................................................. 329
B.1.1 Probability Space ........................................ 329
B.1.2 Borel–Cantelli Theorem................................. 330
B.1.3 Independence............................................. 331
B.1.4 Converse of Borel–Cantelli Theorem................... 332
B.1.5 Conditional Probability.................................. 332
B.1.6 Random Variable......................................... 333
B.2 Discrete Random Variable.......................................... 334
B.2.1 Definition................................................. 334
B.2.2 Expectation............................................... 335
B.2.3 Function of a RV......................................... 336
B.2.4 Nonnegative RV.......................................... 337
B.2.5 Linearity of Expectation................................. 337
B.2.6 Monotonicity of Expectation............................ 338
B.2.7 Variance, Standard Deviation ........................... 338
B.2.8 Important Discrete Random Variables .................. 339
B.3 Multiple Discrete Random Variables .............................. 341
B.3.1 Joint Distribution ........................................ 342
B.3.2 Independence............................................. 343
B.3.3 Expectation of Function of Multiple RVs .............. 343
B.3.4 Covariance ............................................... 344
B.3.5 Conditional Expectation................................. 346
B.3.6 Conditional Expectation of a Function ................. 347
B.4 General Random Variables ......................................... 347
B.4.1 Definitions................................................ 348
B.4.2 Examples ................................................. 348
B.4.3 Expectation............................................... 350
B.4.4 Continuity of Expectation ............................... 353
B.5 Multiple Random Variables ........................................ 354
B.5.1 Random Vector........................................... 354
B.5.2 Minimum and Maximum of Independent RVs ......... 356
B.5.3 Sum of Independent Random Variables ................ 357
B.6 Random Vectors..................................................... 357
B.6.1 Orthogonality and Projection............................ 359
B.7 Density of a Function of Random Variables....................... 360
B.7.1 Linear Transformations.................................. 360
B.7.2 Nonlinear Transformations .............................. 362
B.8 References........................................................... 367
B.9 Problems ............................................................ 367
References......................................................................... 375
Index............................................................................... 377

标签: Computer Engine and COM CTR

实例下载地址

Probability in electrical engineering and computer scicence

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警