在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例Clojure → Turbulent Flows

Turbulent Flows

Clojure

下载此实例
  • 开发语言:Others
  • 实例大小:48.22M
  • 下载次数:3
  • 浏览次数:34
  • 发布时间:2022-09-03
  • 实例类别:Clojure
  • 发 布 人:水墨兰亭
  • 文件格式:.pdf
  • 所需积分:2
 相关标签: turbulent flow

实例介绍

【实例简介】 Turbulent Flows

好不容易找到的资源,别的没地方下,分享给大家,一定不要用于商业用途,仅限于学习交流。


【实例截图】

【核心代码】

Contents
List of tables
Preface
Nomenclature
PART ONE: FUNDAMENTALS
1
Introduction
1.1 The nature of turbulent flows
1.2 The study of turbulent flows
2
The equations of fluid motion
2.1 Continuum fluid properties
2.2
Eulerian and Lagrangian fields
2.3 The continuity equation
2.4 The momentum equation
2.5
The role of pressure
2.6 Conserved passive scalars
2.7 The vorticity equation
2.8 Rates of strain and rotation
2.9 Transformation properties
3
The statistical description of turbulent flows
3.1 The random nature of turbulence
3.2
Characterization of random variables
3.3
Examples of probability distributions
3.4
Joint random variables
3.5 Normal and joint-normal distributions
3.6
Random processes
3.7
Random fields
3.8 Probability and averaging
page xv
xvii
xxi
vii 4
Mean-flow equations
4.1 Reynolds equations
4.2 Reynolds stresses
4.3 The mean scalar equation
4.4 Gradient-diffusion and turbulent-viscosity hypotheses
5
Free shear flows
5.1 The round jet: experimental observations
5.1.1 A description of the flow
5.1.2 The mean velocity field
5.1.3 Reynolds stresses
5.2 The round jet: mean momentum
5.2.1 Boundary-layer equations
5.2.2
Flow rates of mass, momentum, and energy
5.2.3 Self-similarity
5.2.4 Uniform turbulent viscosity
5.3 The round jet: kinetic energy
5.4 Other self-similar flows
5.4.1 The plane jet
5.4.2 The plane mixing layer
5.4.3 The plane wake
5.4.4 The axisymmetric wake
5.4.5 Homogeneous shear flow
5.4.6 Grid turbulence
5.5 Further observations
5.5.1 A conserved scalar
5.5.2 Intermittency
5.5.3 PDFs and higher moments
5.5.4 Large-scale turbulent motion
6
The scales of turbulent motion
6.1 The energy cascade and Kolmogorov hypotheses
6.1.1 The energy cascade
6.1.2 The Kolmogorov hypotheses
6.1.3 The energy spectrum
6.1.4 Restatement of the Kolmogorov hypotheses
6.2 Structure functions
6.3 Two-point correlation
6.4 Fourier modes
6.4.1 Fourier-series representation
6.4.2 The evolution of Fourier modes 6.4.3 The kinetic energy of Fourier modes
6.5 Velocity spectra
6.5.1 Definitions and properties
6.5.2 Kolmogorov spectra
6.5.3 A model spectrum
6.5.4 Dissipation spectra
6.5.5 The inertial subrange
6.5.6 The energy-containing range
6.5.7 Effects of the Reynolds number
6.5.8 The shear-stress spectrum
6.6
The spectral view of the energy cascade
6.7
Limitations, shortcomings, and refinements
6.7.1 The Reynolds number
6.7.2 Higher-order statistics
6.7.3 Internal intermittency
6.7.4 Refined similarity hypotheses
6.7.5 Closing remarks
7 Wall flows
7.1
Channel flow
7.1.1 A description of the flow
7.1.2 The balance of mean forces
7.1.3 The near-wall shear stress
7.1.4 Mean velocity profiles
7.1.5 The friction law and the Reynolds number
7.1.6 Reynolds stresses
7.1.7 Lengthscales and the mixing length
7.2 Pipe flow
7.2.1 The friction law for smooth pipes
7.2.2 Wall roughness
7.3 Boundary layers
7.3.1 A description of the flow
7.3.2 Mean-momentum equations
7.3.3 Mean velocity profiles
7.3.4 The overlap region reconsidered
7.3.5 Reynolds-stress balances
7.3.6 Additional effects
7.4 Turbulent structures PART TWO: MODELLING AND SIMULATION
8
An introduction to modelling and simulation
8.1 The challenge
8.2 An overview of approaches
8.3 Criteria for appraising models
9 Direct numerical simulation
9.1 Homogeneous turbulence
9.1.1 Pseudo-spectral methods
9.1.2 The computational cost
9.1.3 Artificial modifications and incomplete resolution
9.2
Inhomogeneous flows
9.2.1 Channel flow
9.2.2 Free shear flows
9.2.3 Flow over a backward-facing step
9.3 Discussion
10 Turbulent-viscosity models
10.1 The turbulent-viscosity hypothesis
10.1.1 The intrinsic assumption
10.1.2 The specific assumption
10.2 Algebraic models
10.2.1 Uniform turbulent viscosity
10.2.2 The mixing-length model
10.3 Turbulent-kinetic-energy models
10.4 The k-E model
10.4.1 An overview
10.4.2 The model equation for E
10.4.3 Discussion
10.5 Further turbulent-viscosity models
10.5.1 The k-w model
10.5.2 The Spalart-Allmaras model
11 Reynolds-stress and related models
11.1 Introduction
11.2 The pressure-rate-of-strain tensor
11.3 Return-to-isotropy models
11.3.1 Rotta's model
11.3.2 The characterization of Reynolds-stress anisotropy
11.3.3 Nonlinear return-to-isotropy models
1 1.4 Rapid-distortion theory
11.4.1 Rapid-distortion equations 11.4.2 The evolution of a Fourier mode
11.4.3 The evolution of the spectrum
11.4.4 Rapid distortion of initially isotropic turbulence
11.4.5 Final remarks
11.5 Pressure-rate-of-strain models
11.5.1 The basic model (LRR-IP)
11.5.2 Other pressure-rate-of-strain models
11.6 Extension to inhomogeneous flows
11.6.1 Redistribution
11.6.2 Reynolds-stress transport
11.6.3 The dissipation equation
11.7 Near-wall treatments
11.7.1 Near-wall effects
11.7.2 Turbulent viscosity
11.7.3 Model equations for k and E
11.7.4 The dissipation tensor
11.7.5 Fluctuating pressure
11.7.6 Wall functions
11.8 Elliptic relaxation models
11.9 Algebraic stress and nonlinear viscosity models
11.9.1 Algebraic stress models
11.9.2 Nonlinear turbulent viscosity
11.10 Discussion
12 PDF methods
12.1 The Eulerian PDF of velocity
12.1.1 Definitions and properties
12.1.2 The PDF transport equation
12.1.3 The PDF of the fluctuating velocity
12.2 The model velocity PDF equation
12.2.1 The generalized Langevin model
12.2.2 The evolution of the PDF
12.2.3 Corresponding Reynolds-stress models
12.2.4 Eulerian and Lagrangian modelling approaches
12.2.5 Relationships between Lagrangian and Eulerian
PDFs
12.3 Langevin equations
12.3.1 Stationary isotropic turbulence
12.3.2 The generalized Langevin model
12.4 Turbulent dispersion 12.5 The velocity-frequency joint PDF
12.5.1 Complete PDF closure
12.5.2 The log-normal model for the turbulence frequency
12.5.3 The gamma-distribution model
12.5.4 The model joint PDF equation
12.6 The Lagrangian particle method
12.6.1 Fluid and particle systems
12.6.2 Corresponding equations
12.6.3 Estimation of means
12.6.4 Summary
12.7 Extensions
12.7.1 Wall functions
12.7.2 The near-wall elliptic-relaxation model
12.7.3 The wavevector model
12.7.4 Mixing and reaction
12.8 Discussion
13 Large-eddy simulation
13.1 Introduction
13.2 Filtering
13.2.1 The general definition
13.2.2 Filtering in one dimension
13.2.3 Spectral representation
13.2.4 The filtered energy spectrum
13.2.5 The resolution of filtered fields
13.2.6 Filtering in three dimensions
13.2.7 The filtered rate of strain
13.3 Filtered conservation equations
13.3.1 Conservation of momentum
13.3.2 Decomposition of the residual stress
13.3.3 Conservation of energy
13.4 The Smagorinsky model
13.4.1 The definition of the model
13.4.2 Behavior in the inertial subrange
13.4.3 The Smagorinsky filter
13.4.4 Limiting behaviors
13.4.5 Near-wall resolution
13.4.6 Tests of model performance
13.5 LES in wavenumber space
13.5.1 Filtered equations contents
xm
13.5.2 Triad interactions
13.5.3 The spectral energy balance
13.5.4 The spectral eddy viscosity
13.5.5 Backscatter
13.5.6 A statistical view of LES
13.5.7 Resolution and modelling
13.6 Further residual-stress models
13.6.1 The dynamic model
13.6.2 Mixed models and variants
13.6.3 Transport-equation models
13.6.4 Implicit numerical filters
13.6.5 Near-wall treatments
13.7 Discussion
13.7.1 An appraisal of LES
13.7.2 Final perspectives
PART THREE: APPENDICES
Appendix A Cartesian tensors
A.l Cartesian coordinates and vectors
A.2 The definition of Cartesian tensors
A.3 Tensor operations
A.4 The vector cross product
AS A summary of Cartesian-tensor suffix notation
Appendix B Properties of second-order tensors
Appendix C Dirac delta functions
C.1 The definition of 6(x)
C.2 Properties of 6(x)
C.3 Derivatives of 6(x)
C.4 Taylor series
C.5 The Heaviside function
C.6 Multiple dimensions
Appendix D Fourier transforms
Appendix E Spectral representation of stationary random processes
E.l Fourier series
E.2 Periodic random processes
E.3 Non-periodic random processes
E.4 Derivatives of the process
Appendix F The discrete Fourier transform XIV
Contents
Appendix G Power-law spectra
Appendix H Derivation of Eulerian PDF equations
Appendix I Characteristic functions
Appendix J Diffusion processes
Bibliography
Author index
Subject index List of tables
Spreading rate parameters of turbulent round jets
Timescales in turbulent round jets
Spreading parameters of turbulent axisymmetric wakes
Statistics in homogeneous turbulent shear flow
Characteristic scales of the dissipation spectrum
Characteristic scales of the energy spectrum
Tail contributions to velocity-derivative moments
Wall regions and layers and their defining properties
Statistics in turbulent channel flow
Computational difficulty of different turbulent flows
Numerical parameters for DNS of isotropic turbulence
Numerical varameters for DNS of channel flow
Numerical parameter for DNS of the flow over a backward-facing step
10.1 The turbulent Reynolds number of self-similar free shear flows
10.2 Definition of variables in two-equation models
11.1 Special states of the Reynolds-stress tensor
11.2 Mean velocity gradients for simple deformations
11.3 Tensors used in pressure-rate-of-strain models
11.4 Coefficients in pressure-rate-of-strain models
11.5 Coefficients in algebraic stress models
11.6 Integrity basis for turbulent viscosity models
11.7 Attributes of different RANS turbulence models
12.1 Comparison between fluid and particle systems
12.2 Different levels of PDF models
13.1 Resolution in DNS and in some variants of LES
13.2 Filter functions and transfer functions
13.3 Estimates of filtered and residual quantities in the inertial subrange
13.4 Definition of the different types of triad interactions
B.l Operations between first- and second-order tensors
D. 1 Fourier-transform pairs
E.1 Spectral properties of random processes
G.l Power-law spectra and structure functions
1.1 Relationships bctween characteristic functions and PDFs

标签: turbulent flow

实例下载地址

Turbulent Flows

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警