在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → Nonimaging Optics

Nonimaging Optics

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:7.52M
  • 下载次数:2
  • 浏览次数:62
  • 发布时间:2022-06-23
  • 实例类别:一般编程问题
  • 发 布 人:ytxyd
  • 文件格式:.pdf
  • 所需积分:2
 相关标签: TI MA IC IM cs

实例介绍

【实例简介】Nonimaging Optics

【实例截图】

【核心代码】

CONTENTS
v
Preface xi
1. Nonimaging Optical Systems and Their Uses 1
1.1 Nonimaging Collectors 1
1.2 Definition of the Concentration Ratio; The Theoretical
Maximum 3
1.3 Uses of Concentrators 5
1.4 Uses of Illuminators 6
References 6
2. Some Basic Ideas in Geometrical Optics 7
2.1 The Concepts of Geometrical Optics 7
2.2 Formulation of the Ray-Tracing Procedure 8
2.3 Elementary Properties of Image-Forming Optical Systems 11
2.4 Aberrations in Image-Forming Optical Systems 13
2.5 The Effect of Aberrations in an Image-Forming System on the
Concentration Ratio 14
2.6 The Optical Path Length and Fermat’s Principle 16
2.7 The Generalized Étendue or Lagrange Invariant and the
Phase Space Concept 18
2.8 The Skew Invariant 22
2.9 Different Versions of the Concentration Ratio 23
Reference 23
3. Some Designs of Image-Forming Concentrators 25
3.1 Introduction 25
3.2 Some General Properties of Ideal Image-Forming
Concentrators 25
3.3 Can an Ideal Image-Forming Concentrator Be Designed? 31
3.4 Media with Continuously Varying Refractive Indices 34
3.5 Another System of Spherical Symmetry 37
3.6 Image-Forming Mirror Systems 38
3.7 Conclusions on Classical Image-Forming Concentrators 40
References 41
4. Nonimaging Optical Systems 43
4.1 Limits to Concentration 43
4.2 Imaging Devices and Their Limitations 44
4.3 Nonimaging Concentrators 45
4.4 The Edge-Ray Principle or “String” Method 47
4.5 Light Cones 49
4.6 The Compound Parabolic Concentrator 50
4.7 Properties of the Compound Parabolic Concentrator 56
4.8 Cones and Paraboloids As Concentrators 64
References 67
5. Developments and Modifications of the Compound
Parabolic Concentrator 69
5.1 Introduction 69
5.2 The Dielectric-Filled CPC with Total Internal Reflection 69
5.3 The CPC with Exit Angle Less Than p/2 72
5.4 The Concentrator for A Source at A Finite Distance 74
5.5 The Two-Stage CPC 76
5.6 The CPC Designed for Skew Rays 78
5.7 The Truncated CPC 80
5.8 The Lens-Mirror CPC 84
5.9 2D Collection in General 85
5.10 Extension of the Edge-Ray Principle 85
5.11 Some Examples 87
5.12 The Differential Equation for the Concentrator Profile 89
5.13 Mechanical Construction for 2D Concentrator Profiles 89
5.14 A General Design Method for A 2D Concentrator with
Lateral Reflectors 92
5.15 Application of the Method: Tailored Designs 95
5.16 A Constructive Design Principle for Optimal Concentrators 96
References 97
6. The Flow-line Method for Designing Nonimaging Optical
Systems 99
6.1 The Concept of the Flow Line 99
6.2 Lines of Flow from Lambertian Radiators: 2D Examples 100
6.3 3D Example 102
6.4 A Simplified Method for Calculating Lines of Flow 103
6.5 Properties of the Lines of Flow 104
6.6 Application to Concentrator Design 105
6.7 The Hyperboloid of Revolution As A Concentrator 106
6.8 Elaborations of the Hyperboloid: the Truncated Hyperboloid 106
6.9 The Hyperboloid Combined with A Lens 107
6.10 The Hyperboloid Combined with Two Lenses 108
6.11 Generalized Flow Line Concentrators with Refractive
Components 108
6.12 Hamiltonian Formulation 109
6.13 Poisson Bracket Design Method 115
6.14 Application of the Poisson Bracket Method 128
6.15 Multifoliate-Reflector-Based Concentrators 138
vi Contents
6.16 The Poisson Bracket Method in 2D Geometry 142
6.17 Elliptic Bundles in Homogeneous Media 144
6.18 Conclusion 155
References 157
7. Concentrators for Prescribed Irradiance 159
7.1 Introduction 159
7.2 Reflector Producing A Prescribed Functional Transformation 160
7.3 Some Point Source Examples with Cylindrical and
Rotational Optics 161
7.4 The Finite Strip Source with Cylindrical Optics 162
7.5 The Finite Disk Source with Rotational Optics 166
7.6 The Finite Tubular Source with Cylindrical Optics 172
7.7 Freeform Optical Designs for Point Sources in 3D 173
References 178
8. Simultaneous Multiple Surface Design Method 181
8.1 Introduction 181
8.2 Definitions 182
8.3 Design of A Nonimaging Lens: the RR Concentrator 184
8.4 Three-Dimensional Ray Tracing of Rotational Symmetric
RR Concentrators 189
8.5 The XR Concentrator 192
8.6 Three-Dimensional Ray Tracing of Some XR Concentrators 194
8.7 The RX Concentrator 195
8.8 Three-Dimensional Ray Tracing of Some RX Concentrators 198
8.9 The XX Concentrator 201
8.10 The RXI Concentrator 202
8.11 Three-Dimensional Ray Tracing of Some RXI Concentrators 207
8.12 Comparison of the SMS Concentrators with Other
Nonimaging Concentrators and with Image Forming
Systems 209
8.13 Combination of the SMS and the Flow-Line Method 211
8.14 An Example: the XRI F Concentrator 212
References 217
9. Imaging Applications of Nonimaging Concentrators 219
9.1 Introduction 219
9.2 Imaging Properties of the Design Method 220
9.3 Results 225
9.4 Nonimaging Applications 231
9.5 SMS Method and Imaging Optics 233
References 233
10. Consequences of Symmetry (by Narkis Shatz and John C. Bortz) 235
10.1 Introduction 235
10.2 Rotational Symmetry 236
10.3 Translational Symmetry 247
References 263
Contents vii
11. Global Optimization of High-Performance Concentrators
(by Narkis Shatz and John C. Bortz) 265
11.1 Introduction 265
11.2 Mathematical Properties of Mappings in Nonimaging
Optics 266
11.3 Factors Affecting Performance 267
11.4 The Effect of Source and Target Inhomogeneities on the
Performance Limits of Nonsymmetric Nonimaging
Optical Systems 268
11.5 The Inverse-Engineering Formalism 274
11.6 Examples of Globally Optimized Concentrator Designs 276
References 303
12. A Paradigm for a Wave Description of Optical Measurements 305
12.1 Introduction 305
12.2 The Van Cittert-Zernike Theorem 306
12.3 Measuring Radiance 306
12.4 Near-Field and Far-Field Limits 309
12.5 A Wave Description of Measurement 310
12.6 Focusing and the Instrument Operator 311
12.7 Measurement By Focusing the Camera on the Source 313
12.8 Experimental Test of Focusing 313
12.9 Conclusion 315
References 316
13. Applications to Solar Energy Concentration 317
13.1 Requirements for Solar Concentrators 317
13.2 Solar Thermal Versus Photovoltaic Concentrator
Specifications 318
13.3 Nonimaging Concentrators for Solar Thermal Applications 327
13.4 SMS Concentrators for Photovoltaic Applications 350
13.5 Demonstration and Measurement of Ultra-High Solar
Fluxes (C g Up to 100,000) 366
13.6 Applications Using Highly Concentrated Sunlight 381
13.7 Solar Processing of Materials 385
13.8 Solar Thermal Applications of High-Index Secondaries 387
13.9 Solar Thermal Propulsion in Space 389
References 391
14. Manufacturing Tolerances 395
14.1 Introduction 395
14.2 Model of Real Concentrators 396
14.3 Contour Error Model 396
14.4 The Concentrator Error Multiplier 410
14.5 Sensitivity to Errors 411
14.6 Conclusions 412
References 413
viii Contents
APPENDICES
APPENDIX A Derivation and Explanation of the Étendue
Invariant, Including the Dynamical Analogy;
Derivation of the Skew Invariant 415
A.1 The generalized étendue 415
A.2 Proof of the generalized étendue theorem 416
A.3 The mechanical analogies and liouville’s theorem 418
A.4 Conventional photometry and the étendue 419
References 419
APPENDIX B The Edge-Ray Theorem 421
B.1 Introduction 421
B.2 The Continuous Case 421
B.3 The Sequential Surface Case 426
B.4 The Flow-Line Mirror Case 427
B.5 Generation of Edge Rays at Slope Discontinuities 429
B.6 Offence Against the Edge-Ray Theorem 430
References 432
APPENDIX C Conservation of Skew and Linear Momentum 433
C.1 Skew Invariant 433
C.2 Luneburg Treatment for Skew Rays 434
C.3 Linear Momentum Conservation 435
C.4 Design of Concentrators for Nonmeridian Rays 435
References 437
APPENDIX D Conservation of Etendue for Two-Parameter
Bundles of Rays 439
D.1 Conditions for Achromatic Designs 441
D.2 Conditions for Constant Focal Length in Linear Systems 446
References 447
APPENDIX E Perfect Off-Axis Imaging 449
E.1 Introduction 449
E.2 The 2D Case 450
E.3 The 3D Case 452
References 459
APPENDIX F The Luneberg Lens 461
APPENDIX G The Geometry of the Basic Compound Parabolic
Concentrator 467
APPENDIX H The q i /q o Concentrator 471
APPENDIX I The Truncated Compound Parabolic Concentrator 473
APPENDIX J The Differential Equation for the 2D Concentrator
Profile with Nonplane Absorber 477
Reference 479
APPENDIX K Skew Rays in Hyperboloidal Concentrator 481
APPENDIX L Sine Relation for Hyperboloid/Lens Concentrator 483
Contents ix
APPENDIX M The Concentrator Design for Skew Rays 485
M.1 The Differential Equation 485
M.2 The Ratio of Input to Output Areas for the Concentrator 486
M.3 Proof That Extreme Rays Intersect at the Exit Aperture Rim 488
M.4 Another Proof of the Sine Relation for Skew Rays 489
M.5 The Frequency Distribution of h 490
Index 493

标签: TI MA IC IM cs

实例下载地址

Nonimaging Optics

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警