实例介绍
【实例简介】使用BERT Bi-LSTM CRF 实现命名实体识别
信息识别:使用BERT Bi-LSTM CRF 模型实现命名实体识别
【实例截图】
【核心代码】
.
├── CLUENER2020-main
│ ├── BERT-CRF
│ │ ├── config.py
│ │ ├── data
│ │ │ └── clue
│ │ │ ├── test.json
│ │ │ ├── test.npz
│ │ │ ├── train.json
│ │ │ └── train.npz
│ │ ├── data_loader.py
│ │ ├── data_process.py
│ │ ├── experiments
│ │ │ └── clue
│ │ │ ├── config.json
│ │ │ └── train.log
│ │ ├── metrics.py
│ │ ├── model.py
│ │ ├── pretrained_bert_models
│ │ │ ├── bert-base-chinese
│ │ │ │ └── config.json
│ │ │ └── chinese_roberta_wwm_large_ext
│ │ │ └── config.json
│ │ ├── run.py
│ │ ├── train.py
│ │ └── utils.py
│ ├── BERT-LSTM-CRF
│ │ ├── case
│ │ ├── config.py
│ │ ├── data
│ │ │ └── clue
│ │ │ ├── test.json
│ │ │ ├── test.npz
│ │ │ ├── train.json
│ │ │ └── train.npz
│ │ ├── data_loader.py
│ │ ├── data_process.py
│ │ ├── experiments
│ │ │ └── clue
│ │ │ ├── config.json
│ │ │ └── train.log
│ │ ├── metrics.py
│ │ ├── model.py
│ │ ├── pretrained_bert_models
│ │ │ ├── bert-base-chinese
│ │ │ │ └── config.json
│ │ │ └── chinese_roberta_wwm_large_ext
│ │ │ └── config.json
│ │ ├── run.py
│ │ ├── train.py
│ │ └── utils.py
│ ├── BERT-Softmax
│ │ ├── case
│ │ ├── config.py
│ │ ├── data
│ │ │ └── clue
│ │ │ ├── test.json
│ │ │ ├── test.npz
│ │ │ ├── train.json
│ │ │ └── train.npz
│ │ ├── data_loader.py
│ │ ├── data_process.py
│ │ ├── experiments
│ │ │ └── clue
│ │ │ ├── config.json
│ │ │ └── train.log
│ │ ├── metrics.py
│ │ ├── model.py
│ │ ├── pretrained_bert_models
│ │ │ ├── bert-base-chinese
│ │ │ │ └── config.json
│ │ │ └── chinese_roberta_wwm_large_ext
│ │ │ └── config.json
│ │ ├── run.py
│ │ ├── train.py
│ │ └── utils.py
│ ├── BiLSTM-CRF
│ │ ├── Vocabulary.py
│ │ ├── case
│ │ ├── config.py
│ │ ├── data
│ │ │ └── clue
│ │ │ ├── test.json
│ │ │ ├── test.npz
│ │ │ ├── train.json
│ │ │ ├── train.npz
│ │ │ └── vocab.npz
│ │ ├── data_loader.py
│ │ ├── data_process.py
│ │ ├── experiments
│ │ │ └── clue
│ │ │ └── train.log
│ │ ├── metric.py
│ │ ├── model.py
│ │ ├── run.py
│ │ ├── train.py
│ │ └── utils.py
│ ├── readme.md
│ └── requirements.txt
└── 使用BERT Bi-LSTM CRF 实现命名实体识别.zip
33 directories, 66 files
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论