在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → 中国碳中和2022_Book_GuidebookToCarbonNeutralityInC

中国碳中和2022_Book_GuidebookToCarbonNeutralityInC

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:5.92M
  • 下载次数:12
  • 浏览次数:229
  • 发布时间:2022-03-16
  • 实例类别:一般编程问题
  • 发 布 人:1982116477
  • 文件格式:.pdf
  • 所需积分:2
 相关标签: RAL car CA AR IC

实例介绍

【实例简介】中国碳中和2022_Book_GuidebookToCarbonNeutralityInC

【实例截图】

【核心代码】

Contents
1 Exploring the Road to Carbon Neutrality . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Seeking a Peak: 9.9–10.8bn Tonnes of Net Carbon
Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Structural Path: Analysis Based on Green Premium . . . . . . . . . . . 7
1.3 Four Scenarios: General Equilibrium Analysis Under CGE
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Model Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Scenario Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 BAU Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Carbon Tax Scenario (M1) . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.5 Carbon Trading Scenario (M2) . . . . . . . . . . . . . . . . . . . . . 16
1.3.6 Carbon Tax Carbon Trading Technological
Progress Scenario (M3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.7 Sensitivity Analysis of Technology Curve . . . . . . . . . . . . 23
1.3.8 Sensitivity Analysis of Carbon Tax . . . . . . . . . . . . . . . . . . 25
1.4 Road to Carbon Neutrality = Technology Carbon
Pricing Social Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2 Balancing Efficiency and Fairness: Kaldor-Hicks
Improvement? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1 Three Approaches to Achieving Carbon Neutrality:
Innovation is the Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.1 Carbon Neutrality Cannot Be Achieved Through
“zero-sum game” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.2 Approach 1: Raising Carbon Price to Internalize
External Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.1.3 Approach 2: Accelerating Innovation
to Fundamentally Alter Mode of Production . . . . . . . . . . 35
2.1.4 Multiple Barriers to Eco-Innovation . . . . . . . . . . . . . . . . . 37
2.1.5 Innovation-Related Policy Suggestions . . . . . . . . . . . . . . . 37
xxxiii
xxxiv Contents
2.1.6 Approach 3: Improving the Social Governance
System and Encouraging Emission Reduction
Among the General Public . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2 Issues Related to Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Distribution of Income . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.2 How to Share the Cost of Emission Reduction
Among Industries and Regions? . . . . . . . . . . . . . . . . . . . . 41
3 The Capacity of Carbon Pricing Mechanism . . . . . . . . . . . . . . . . . . . . . 45
3.1 Unified Carbon Price: Social Cost or Net Social Cost? . . . . . . . . . 46
3.2 Green Premium and the Choice of Carbon Pricing
Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.1 Pigou Versus Coase: Similarities and Differences
Between Carbon Tax and Carbon Market . . . . . . . . . . . . . 53
3.2.2 Carbon Pricing from the Perspective of Green
Premium: Carbon Market to Be the Mainstay,
with Carbon Tax as a Complement . . . . . . . . . . . . . . . . . . 61
3.2.3 Establishing a Carbon Market Trading Mechanism
with Auctions and Futures at the Core . . . . . . . . . . . . . . . 64
3.3 What Carbon Market Can and Cannot Do: Regional
Transfer of Pollutants Under Carbon Trading . . . . . . . . . . . . . . . . . 66
3.3.1 Social Governance: A Policy Instrument to Lower
Green Premium in Addition to Carbon Pricing . . . . . . . . 69
3.3.2 Mandatory Policies Can Be Used to Regulate
Waste of Financial Resources as Seen in Bitcoin
Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.3 Advocacy Policies as Necessary Move to Control
Waste of Resources in the Real Economy . . . . . . . . . . . . . 73
4 Green Finance: Clarifying Functions and Capacity . . . . . . . . . . . . . . . 77
4.1 Green Finance: Serving or Guiding the Real Economy? . . . . . . . . 77
4.2 Green Finance in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 How Much Investment is Needed to Achieve Carbon
Neutrality? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.1 Bottom-up Analysis of China’s Demand for Green
Investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.2 Aggregate Investment Demand and Structural
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 New Targets Bring in New Challenges. What Are
the Weaknesses in China’s Green Finance? . . . . . . . . . . . . . . . . . . . 85
4.4.1 Mismatch Between Supply and Demand in Green
Investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.2 Lack of Widely Accepted Green Standards . . . . . . . . . . . 90
4.4.3 Defects in Green-Information Disclosure System . . . . . . 93
4.4.4 Weak Guidance from Financial Institutions . . . . . . . . . . . 95
Contents xxxv
4.5 Turning Challenges into Opportunities: How to Address
the Weaknesses in China’s Green Finance? . . . . . . . . . . . . . . . . . . . 96
4.5.1 Setting a Unified Green Standard in China . . . . . . . . . . . . 96
4.5.2 Establishing a Binding Green-Information
Disclosure Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5.3 Improving Incentive Policy to Boost the Overall
Development of Green Financial Market . . . . . . . . . . . . . 98
4.5.4 Strengthening Education of Green Concept;
Financial Institutions Offering Both Services
and Guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.5 IncorporatingEnvironmentalRisksintoPrudential
Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5 Green Technology: From Quantity to Quality . . . . . . . . . . . . . . . . . . . . 105
5.1 Technological Breakthrough and Carbon Neutrality . . . . . . . . . . . 106
5.1.1 Why Do We Need a Technological Breakthrough? . . . . . 106
5.1.2 What Can Become Carbon Neutral
by Technological Advances and What Cannot? . . . . . . . . 107
5.1.3 WhatAretheTechnologicalRoutesfortheCarbon
Neutrality Initiative? What Are the Constraints? . . . . . . . 107
5.2 Cost is a Touchstone for the Development of Technology . . . . . . 109
5.2.1 What Kind of Technologies Are Capable
of Reaching Emission Peak and Carbon-Neutral
as Planned? What Are the Differences
in the Choices of Various Technological Routes? . . . . . . 109
5.2.2 Three Measures to Reduce the Cost of Developing
Energy Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.3 Existing and Potential Technologies for Net Zero Carbon
Emissions and Carbon Neutrality Initiatives . . . . . . . . . . . . . . . . . . 111
5.3.1 Technologies to Help Cut CO 2 Emissions Focus
on Reducing Energy Consumption and Shifting
to Energy Technologies that Produce Lower CO 2
Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.2 Carbon-Neutral Technologies: Technologies
that Help Achieve Zero-Carbon
and Negative-Carbon Emissions . . . . . . . . . . . . . . . . . . . . 112
5.4 “Photovoltaic Energy Storage”, Hydrogen Energy,
and Carbon Capture Becoming the Main Technological
Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.1 The Main and Auxiliary Technological Routes
for the Carbon Neutrality Initiative . . . . . . . . . . . . . . . . . . 116
5.4.2 The Main Technological Route for the Carbon
Neutrality Initiative in the Power Industry . . . . . . . . . . . . 118
xxxvi Contents
5.5 Policy Suggestions: Enhancing Technology R&D
Protection; Supporting the Industrialization of New
Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.5.1 Technologies that May Develop More Rapidly
Than Expected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5.2 Technologies that May Develop More Slowly
Than Expected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6 Green Energy: A New Chapter in China . . . . . . . . . . . . . . . . . . . . . . . . 127
6.1 Overview of China’s Current Energy Structure . . . . . . . . . . . . . . . 127
6.1.1 Energy Sector Produces Nearly 90% of Carbon
Emissions in China; Building Green Energy
Supply System is Top Priority . . . . . . . . . . . . . . . . . . . . . . 127
6.1.2 Total Energy Demand May Increase Under Steady
Economic Growth Despite Decline in Energy
Consumption Per Unit of GDP . . . . . . . . . . . . . . . . . . . . . . 128
6.1.3 Carbon Emissions Reduction is Difficult
to Achieve Under Current Energy Structure; The
Country Needs Stronger Top-Down Planning
and Policy Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Start from More Feasible Methods to Achieve Energy
Transition Through More Economical Ways . . . . . . . . . . . . . . . . . . 131
6.3 Lowering Costs to Raise Non-fossil Fuels’ Proportion
in Power Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3.1 Calculation of Green Premiums in Power Sector . . . . . . . 132
6.3.2 Power Generation: Non-fossil Energy’s Lower
Costs Per kWh Fuels Transition to Cleaner Energy
Mix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.3 Absorption:ComplementaryMulti-energySystem
Minimizes Absorption Costs . . . . . . . . . . . . . . . . . . . . . . . 135
6.4 Non-power Sector: Electrification, Hydrogen Power
and Carbon Capture Fuel Energy Transition . . . . . . . . . . . . . . . . . . 136
6.4.1 China’s Electrification Rate Will Likely Reach
70%; The Remaining 30% Demand Requires
Non-electric Power and Other Energy Resources
Supported by New Technologies to Achieve
Carbon Neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4.2 Non-power Sector: Hydrogen Power and Carbon
Capture is Feasible Technology Solution
to Carbon Neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4.3 Other Energy Resources Adopted Carbon Capture
and Hydrogen Power to Meet 22% and 8% Energy
Demand in 2060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.4.4 Costs and Green Premiums of Non-power Carbon
Neutrality Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Contents xxxvii
6.5 Policy Recommendation: Power System Reform
Accelerates Non-fossil Energy Absorption and Helps
the Development of Hydrogen Power . . . . . . . . . . . . . . . . . . . . . . . 141
6.5.1 Policy Recommendation for the Power Sector:
Stabilize New Energy Absorption . . . . . . . . . . . . . . . . . . . 141
6.5.2 Policy Recommendation for Non-power Sector:
Building Supporting System for Carbon
Reduction; Establishing Reward and Penalty
System to Fuel Clean Energy Development . . . . . . . . . . . 142
7 Green Manufacturing: Carbon Emissions Reduction
Roadmap of Carbon Intensive Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.1 Cost of Zero Emissions: Analyzing the Carbon Neutrality
Roadmaps of Manufacturing Industries from Perspective
of Green Premiums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.2 Steel Industry: Mature Emission Reduction Path
with Electric Arc Furnace Gradually Demonstrating
Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2.1 Industry Green Premium: Cost for the Steel
Industry to Achieve Carbon Neutrality
at the Current Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.2.2 Technology Roadmaps for Carbon Emissions
Reduction in the Steel Industry . . . . . . . . . . . . . . . . . . . . . 148
7.2.3 Lowering the Green Premium: Will the Steel
Industry Achieve Carbon Peak and Carbon
Neutrality as Planned? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.3 Cement Industry: Achieving Carbon Neutrality is Difficult.
Demand and Cost of Carbon Capture are the Key . . . . . . . . . . . . . 149
7.3.1 Industry Green Premium: Cost of Achieving
Carbon Neutrality at Current Stage for Cement
Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.3.2 Technology Roadmaps for Carbon Emissions
Reduction in the Cement Industry . . . . . . . . . . . . . . . . . . . 151
7.3.3 Lowering the Green Premium: Feasible
Paths to Carbon Peak and Carbon Neutrality
in the Cement Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.4 Aluminum Industry: The Decarbonization of Electricity is
the Key to Carbon Neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.4.1 Industry Green Premium: Cost for the Aluminum
Industry to Achieve Carbon Neutrality
at the Current Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.4.2 Technology Roadmap for Carbon Emissions
Reduction in the Aluminum Industry . . . . . . . . . . . . . . . . 155
xxxviii Contents
7.4.3 Lowering the Green Premium: A Feasible
Path for Carbon Peak and Carbon Neutrality
in the Aluminum Industry . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.5 Chemical Industry: When Carbon Negative Becomes
Possible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.5.1 Industry Carbon Emission: Cost for the Chemical
Industry to Achieve Carbon Neutrality
at the Current Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.5.2 Technology Roadmaps for Carbon Emissions
Reduction in the Chemical Industry . . . . . . . . . . . . . . . . . 160
7.5.3 Policy Guidance and System Building
for Emissions Reduction are Crucial
for the Chemical Industry . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.5.4 Lowering the Green Premium: A Feasible
Path for Carbon Peak and Carbon Neutrality
in the Chemical Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.6 General Manufacturing Industry: Achieving Carbon Peak;
Using Clean Energy to Achieve Carbon Neutrality . . . . . . . . . . . . 164
7.6.1 Industry Green Premium: Cost for the General
Manufacturing to Achieve Carbon Neutrality
at the Current Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.6.2 Technology Roadmap for Carbon Emissions
Reduction in General Manufacturing Industries . . . . . . . 165
7.6.3 Lowering the Green Premium: The Feasible
Pathway to Achieving Carbon Neutrality
in the General Manufacturing Industry . . . . . . . . . . . . . . . 165
8 Green Transportation: A Challenging Road to Carbon
Neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.1 How Far Away is Green Transportation? . . . . . . . . . . . . . . . . . . . . . 168
8.1.1 SourcesofCarbonEmissionsintheTransportation
Industry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
8.1.2 Current Amount of Global Carbon Emissions
from Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.1.3 Have Carbon Emissions from Transportation
Peaked in EU and US? What Experiences Can
China Draw upon? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.2 The Difficulties for Chinese Transportation Industry
to Achieve Carbon Neutrality Measured by the “Green
Premium” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.2.1 Carbon Emissions from Transportation Rise
Notably in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Contents xxxix
8.2.2 The High “Green Premium” Indicates
Decarbonization in the Transportation Industry
Is Costly and Challenging, and Requires
a Combination of Technological Innovation
and Favorable Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.3 Viable Options for China to Achieve Green Transportation . . . . . 175
8.3.1 Carbon Emissions from the Transportation
Industry: Emission Peak in 2030; Carbon
Neutrality in 2060 Seems Unlikely Under
a Neutral Assumption that Emissions in 2060
Equal 23% of the Level in 2019 . . . . . . . . . . . . . . . . . . . . . 175
8.3.2 The PV-Based Transport Sector: PV Ownership
to Rise at First and then Decline; Zero Carbon
Emissions to Be Achieved in 2060 . . . . . . . . . . . . . . . . . . 180
8.3.3 Carbon Emissions from CV-Based Transport
Sector: Rising Applications of New Energy,
Digitalization Technology and Changing
Transport Structure to help this sector achieve
carbon neutrality in 2060 . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.3.4 The Aviation Sector: Emissions in 2060 to Double
from 2019; Achieving Carbon Neutrality is
the Most Challenging for All Modes of Transport . . . . . . 186
8.3.5 Marine Transportation: Carbon Emissions in 2060
to Be 38% of the Emissions in 2019 . . . . . . . . . . . . . . . . . 189
8.3.6 Railway Transport: Zero Carbon Emissions
in 2060 Via Electrification-Based Decarbonization . . . . . 191
8.4 Forecasts for the Use of LIB and Hydrogen Fuel Cell
Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.4.1 LIB to Promote Electrification in PV-Based
Transport and Certain Public Transportation
Sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.4.2 Hydrogen Fuel Cells to Enable Zero-Carbon
Emissions from HDT-Based Transportation . . . . . . . . . . . 193
8.5 Supportive Policies to Help the Transportation Sector
Achieve Carbon Neutrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.5.1 Policy Suggestions on Industrial
Development—PV and CV: Shifting
the Focus of Policies Towards Market Orientation
and Innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8.5.2 Policy Suggestions on Industry
Development—Airlines: Focusing
on Development of Biomass and Hydrogen Energy . . . . 197
xl Contents
8.5.3 Policy Suggestions on Technological
Advances—LIB: Zero Emissions Throughout
the Lifecycle Requires Coordination Between
Companies and Governments . . . . . . . . . . . . . . . . . . . . . . . 197
8.5.4 Policy Recommendations—Fuel Cells: It is
Necessary to Promote Industrialized Applications
of Fuel Cells Via Policies . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.6 Reassessing the Effectiveness of Our Green Transportation
Solutions Based on the “Green Premium” . . . . . . . . . . . . . . . . . . . . 199
8.6.1 The “Green Premium” to Decline Considerably,
but Unlikely to Plunge to Zero in 2060 . . . . . . . . . . . . . . . 199
8.7 Outlook for Green Transportation: A Combination
of Autonomous Vehicles, Super High-Speed Trains
and Supersonic Aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.7.1 Autonomous Driving: It Changes More Than
Travel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.7.2 Can Hyperloop Trains be Realized? . . . . . . . . . . . . . . . . . 202
8.7.3 Commercialization of Supersonic Aircraft Likely
to Be in Sight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9 Living Green: New Chapter of Consumption and Social
Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.1 Living Green Needs Efforts of All Stakeholders . . . . . . . . . . . . . . 205
9.1.1 Low-Carbon Lifestyle is of Great Significance
as Households Are Responsible for 40% of Total
Carbon Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.1.2 Social Governance Requires Efforts
from Households, Companies, and Government . . . . . . . 206
9.2 Green Lifestyle: What Can Households Do to Help
Achieve Carbon Peak? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.2.1 Eating Green . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
9.2.2 Reduction in Food Waste . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.2.3 Green Home . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
9.2.4 Support for Environmental Protection . . . . . . . . . . . . . . . . 212
9.3 Green Business Model: What Can Consumer Goods
Companies Do to Help Achieve Carbon Peak? . . . . . . . . . . . . . . . . 213
9.3.1 Product Innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.3.2 Efficiency Improvement and Energy Consumption
Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.3.3 Environmental Protection and Emission Reduction . . . . 216
9.3.4 Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.3.5 Sharing Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
9.3.6 Environmental, Social, and Governance (ESG)
Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Contents xli
9.4 Policy Formulation and Social Governance: Comparing
China with Other Countries to Identify Future Directions . . . . . . 224
9.4.1 Home Appliances: Energy Efficiency Standards,
Energy-Saving Subsidies and Recycling Systems
Need to Be Improved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.4.2 Furniture: Promote Sustainable Use of Forest
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.4.3 Packaging: Overseas Experience
and the Overcoming of Difficulties . . . . . . . . . . . . . . . . . . 226
9.4.4 Catering: Promote “Clear Your Plate” Campaign
and Organic Food Waste Reusing . . . . . . . . . . . . . . . . . . . 230
9.5 Quantitative Calculations: A Green Lifestyle Is of Great
Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.5.1 Electricity Saving and Use of Clean Energy . . . . . . . . . . . 231
9.5.2 Reduction in Food Waste . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.5.3 Changes in Dietary Structure . . . . . . . . . . . . . . . . . . . . . . . 232
9.5.4 Recycling of Express Delivery Packaging . . . . . . . . . . . . 232
9.5.5 Shared Power Bank Help Reduce Purchase
Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10 Green City: Towards Low-Carbon Urban Planning
and Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
10.1 Problems and Challenges Facing China in Its Green City
Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
10.2 Urban Spatial Planning: Building Cities with Sufficient
Housing Supply and Evenly Distributing Residences
and Workplaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
10.2.1 Evenly Distributing City Resources to Reduce
Commuting Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
10.2.2 Designing a Reasonable Housing System,
and Matching Housing Supply with Demand
to Reduce Carbon Emissions . . . . . . . . . . . . . . . . . . . . . . . 240
10.2.3 Using Land Efficiently to promote High-Quality
Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
10.3 Urban Transportation: Wider Use of AFVs to Reduce
Carbon Emissions from Urban Transportation . . . . . . . . . . . . . . . . 246
10.3.1 Electrification of Urban Buses, Taxis,
and Ride-Hailing Vehicles to Complete in 2030 . . . . . . . 247
10.3.2 Switching to Low-Carbon Modes
of Transportation Before 2030 . . . . . . . . . . . . . . . . . . . . . . 247
10.4 Urban Construction: New Ideas, New Materials, and New
Technologies Drive Reduction in Carbon Emissions . . . . . . . . . . . 250
10.4.1 Overview: Building Sector as a Whole Accounted
for 36% of National Carbon Emissions . . . . . . . . . . . . . . . 250
xlii Contents
10.4.2 Carbon Emissions from Construction: Reducing
Overall Construction Volume and Enhancing
Construction Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
10.4.3 Carbon Emission from Building Management:
Passive House Technology and Comprehensive
Energy Conservation Solutions to Reduce Carbon
Emissions from Building Management . . . . . . . . . . . . . . . 255
10.5 Urban Maintenance: Reduce Energy Consumption
by Public Service Facilities, and Improve Resource
Recycling Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
10.5.1 Conserving Energy and Reducing Emissions
by Using Technology to Reduce Carbon
Emissions from Public Utilities . . . . . . . . . . . . . . . . . . . . . 259
10.5.2 Resource Recycling to Help Build Low-Carbon
Cities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
11 Digital Economy Goes Green: Taking Over Energy-Efficiency
Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.1 Digitalization to Help Cities Improve Energy Efficiency
and Reduce Carbon Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
11.1.1 CVIS Projects: Enhancing Vehicle Allocation
Efficiency and Reducing Fuel Consumption . . . . . . . . . . 267
11.1.2 Smart Airport: Optimizing Aircraft Taxiing
Distance with AI-Enabled Precision Calculation . . . . . . . 269
11.1.3 Smart Logistics: Internet Platform-Based
Logistics Companies to Help Reduce the Empty
Running Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
11.2 Industrial Internet Empowers Enterprise Production
to Achieve Cost Reduction and Efficiency Increase . . . . . . . . . . . . 269
11.2.1 Industrial Internet: Enhancing Energy Efficiency
Through Monitoring and Managing Energy
Consumption Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11.2.2 Application of Big Data Technologies
Brings Accurate Energy-Saving
and Efficiency-Improving Solutions
in Power and Water Sectors . . . . . . . . . . . . . . . . . . . . . . . . 274
11.3 AI and Other New Technologies Help the Technology
Industry Reduce Energy Consumption and Enhance
Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.3.1 How AI Technologies Help Companies Reduce
CO 2 Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
11.3.2 Improving Equipment, Station Locations,
and Networks to Help 5G Jointly Built and Shared
Base Stations to Reduce Energy Consumption . . . . . . . . 276
Contents xliii
11.3.3 Software and Hardware Technologies: The
Trend of Upgrading Base Structures of Telecom
Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
11.3.4 Data Centers: Cloud Computing and Advanced
Refrigeration Technologies Help Improve Power
Usage Effectiveness (PUE) . . . . . . . . . . . . . . . . . . . . . . . . . 281
11.4 What Are the Challenges Ahead? . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
12 Green Investment: New Trend, New Direction . . . . . . . . . . . . . . . . . . . 287
12.1 How Will Following the Principles of Carbon Neutrality
and Sustainable Development Affect Potential Investment
Returns? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
12.1.1 Existing Framework for Building Sustainable
Investment Portfolios and Its Potential Challenges . . . . . 289
12.1.2 How Will the Real Investment Returns Be
Affected by Following the Principles of Carbon
Neutrality and Sustainable Development? . . . . . . . . . . . . 293
12.2 How Will Addressing Climate Change and Following
the Principles of Carbon Neutrality Affect Industrial
Structures? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
12.2.1 Increasing Use of Clean and Renewable Energy . . . . . . . 297
12.2.2 Mounting Financial Risks to Industries with Large
Carbon Footprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
12.2.3 Resource Recycling Amid Transformation
Towards a Circular Economy . . . . . . . . . . . . . . . . . . . . . . . 299
12.2.4 The Positive Role of Advanced Technologies
in “Green Energy” Use and Conservation . . . . . . . . . . . . 300
12.2.5 Low-Carbon Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 301
12.2.6 Reshaping of Regional Economies . . . . . . . . . . . . . . . . . . 302
12.2.7 Impact of Carbon Neutrality on Each Industry,
Based on Views of CICC Sector Analysts . . . . . . . . . . . . 303
12.3 How to Capture Investment Opportunities from Carbon
Neutrality and Guard Against Risks? . . . . . . . . . . . . . . . . . . . . . . . . 303
12.3.1 Investment Opportunities and Risks
from the Carbon Neutrality Investment Theme . . . . . . . . 303
12.3.2 Summary of Existing Carbon Neutrality Indices . . . . . . . 305
13 Tackling Climate Change: Global Cooperation and China’s
Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
13.1 Building Fair and Effective Global Climate Governance
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
13.1.1 HistoryofInternationalCooperationinAddressing
Climate Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
13.1.2 Discussion on Fair and Effective Governance
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
xliv Contents
13.2 Spillover Effects of Global Climate
Governance—International Trade and Climate
Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
13.2.1 International Trade: Embodied Carbon and BTA . . . . . . 322
13.2.2 Global Climate Finance: Realities and Challenges . . . . . 325
13.3 China’s Commitment to Global Climate Cooperation . . . . . . . . . . 331
13.3.1 From Participant to Leader: China’s Active
Involvement in Global Climate Cooperation . . . . . . . . . . 331
13.3.2 China is Promoting Global Response to Climate
Change Along with Europe and the US . . . . . . . . . . . . . . 332
13.3.3 Climate Cooperation and Building a Green Belt
and Road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

标签: RAL car CA AR IC

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警