实例介绍
深度学习算法关键性的论文集合,特别是对于Contrastive Divergence, Deep Belief Nets,Restricted Boltzman Machine,Autoencoder等模型都有完整的描述
【实例截图】
【核心代码】
4744300845144237208.rar
└── Important papers Mentioned
├── A Practical Guide to Training Restricted Boltzmann Machines (2010)
│ ├── A Practical Guide to Training RBM.pdf
│ └── A Practical Guide to Training RBM简单介绍.docx
├── Autoencoders, Unsupervised Learning, and Deep Architecture(2011)
│ └── Autoencoders, Unsupervised Learning, and Deep Architecture.pdf
├── Continuation Method-Global Optimization
│ └── Allgower_E.L.,_Georg_K._Introduction_to_numerical_continuation_methods_(1990)(en)(388s).pdf
├── Contrastive_Divergence(2002)
│ ├── Contrastive_Divergence_learn_normal.m
│ ├── contrastive_divergence.ppt
│ └── Minimizing Contrastive Divergence.pdf
├── Efficient Learning of Sparse Representations with an Energy-Based Model(2007)
│ ├── Copy-Efficient Learning of Sparse Representations.pdf
│ ├── Efficient Learning of Sparse Representations.pdf
│ ├── Efficient Learning of Sparse Representations简单介绍.docx
│ ├── Learning Sparse Topographic Representations with Products of Student-t distribution.pdf
│ ├── Reference
│ │ ├── A Wavelet Approach,Berdlin.pdf
│ │ ├── Copy-EBM for Sparse Overcomplete Representations.pdf
│ │ ├── Copy - Sparse Coding with an Overcomplete Basis Set.pdf
│ │ ├── Energy-Based Models for Sparse Overcomplete Representations.pdf
│ │ ├── Forming sparse representations by local anti-Hebbian learning.pdf
│ │ ├── Hebbian theory - Wikipedia.pdf
│ │ ├── Sparse Coding with an Overcomplete Basis Set.pdf
│ │ └── Wavelet Representation,Mallat.pdf
│ └── Unsupervised Discovery of Non-Linear Structure using Contrastive-Divergence.pdf
├── Greedy Layer-Wise Training of Deep Networks(2007)
│ ├── Copy-Greedy Layer-Wise .pdf
│ ├── Greedy Layer-Wise Training of Deep Networks.pdf
│ └── Greedy Layer-Wise Training of Deep Networks简单介绍.docx
├── layerwise greedy pretraining for DBN-fast,learning algorithm(2006)
│ ├── A fast learning algorithm for deep belief nets.pdf
│ ├── Fast learning algorithm paper简单介绍.docx
│ ├── Reference
│ │ ├── Contrastive_Divergence
│ │ │ ├── Contrastive_Divergence_learn_normal.m
│ │ │ └── Minimizing Contrastive Divergence.pdf
│ │ ├── Explaning_Away
│ │ │ ├── ExplainingAway_bayes_tutorial.pdf
│ │ │ └── Explaining_Away.m
│ │ └── Wake-Sleep Algorithm
│ │ └── Wake-Sleep algorithm for unsupervised networks.pdf
│ └── Up_Down_Algorithm.m
├── Learning Deep Archiecture for AI(2009)
│ ├── Copy-Learning Deep Architectures.pdf
│ ├── Learning Deep Architectures for AI.pdf
│ ├── Learning Deep Architectures for AI 简单介绍.docx
│ └── Reference_papers
│ ├── Alternative to CD training RBM-currently intractable
│ │ └── Representational Power of RBM.pdf
│ ├── Autoassociators
│ │ ├── Nonlinear Autoassociation vs PCA
│ │ │ └── Nonlinear Autoassociation is not Equivalent to PCA.pdf
│ │ └── Spasity on Autoassociator
│ │ ├── Efficient Learning of Sparse Representations.pdf
│ │ ├── Sparse Feature Learning for Deep Belief Networks.pdf
│ │ └── Sparse&Locally Shift Invariant Feature Extractor.pdf
│ ├── Contrastive Divergence Learning
│ │ └── On Contrastive Divergence Learning.pdf
│ ├── Exponential Family Formula-Energy Function for RBM(Important)
│ │ ├── 20news_w100.mat
│ │ └── Exponential Family RBM(Harmoniums).pdf
│ ├── Global Optimization
│ │ ├── Introduction to Numerial Continuation Method.pdf
│ │ ├── Regularization Path-Controlling Temperature.pdf
│ │ └── Shaping-Training with a Curriculum.pdf
│ ├── Optimisation for Initialize layer-Overcomplete Case
│ │ ├── A NEW VIEW OF ICA.pdf
│ │ └── Energy Models for Sparse Overcomplete case.pdf
│ ├── Reconstruction Error General Formula
│ │ └── Unsupervised Layer-Wise Model Selection in DNN.pdf
│ ├── Using DBN to Learn Covariance Kernels for Gaussian Processes.pdf
│ ├── Variant of RBMs
│ │ ├── Conditional RBM with Variable Hidden Biases C.pdf
│ │ ├── Conditional RBM with Variable Weight Matrix W.pdf
│ │ ├── Factored RBMs.pdf
│ │ ├── RBM with lateral connections.pdf
│ │ └── Temporal RBM.pdf
│ └── Variational Approximation Methods
│ ├── Variational approximation methods-Tutorial.pdf
│ └── Variational Bayesian methods - Wikipedia, the free encyclopedia.pdf
├── On the Quantitative Analysis of Deep Belief Networks(2008)
│ └── On the Quantitative Analysis of Deep Belief Networks.pdf
├── Reducing the dimensionality of Neural Networks(2006)
│ ├── computetraj.m
│ ├── drawtraj.m
│ ├── Materials - Reducing the Dimensionality of Data with Neural Networks.pdf
│ ├── paper简介.docx
│ ├── Reducing the Dimensionality of Data with Neural Networks.pdf
│ ├── Refernece
│ │ └── Ink Procedure - Inferring Motor Programs from Images of.pdf
│ └── Training a deep autoencoder or a classifier on MNIST digits
│ ├── Autoencoder_Code
│ │ ├── backpropclassify.m
│ │ ├── backprop.m
│ │ ├── CG_CLASSIFY_INIT.m
│ │ ├── CG_CLASSIFY.m
│ │ ├── CG_MNIST.m
│ │ ├── converter.m
│ │ ├── makebatches.m
│ │ ├── mnistclassify.m
│ │ ├── mnistdeepauto.m
│ │ ├── mnistdisp.m
│ │ ├── rbmhidlinear.m
│ │ ├── rbm.m
│ │ └── README.txt
│ ├── Local Linear Embedding
│ │ ├── JDQR.m.tar.gz
│ │ ├── lle.m
│ │ ├── scurve.m
│ │ └── swissroll.m
│ ├── minimize.m
│ ├── mnistHelpFunction
│ │ ├── loadMNISTImages.m
│ │ ├── loadMNISTLabels.m
│ │ └── loadMNIST_SimpleExample.m
│ ├── readMNIST_MatlabCentral
│ │ ├── license.txt
│ │ └── readMNIST.m
│ ├── t10k-images.idx3-ubyte
│ ├── t10k-labels.idx1-ubyte
│ ├── train-images.idx3-ubyte
│ └── train-labels.idx1-ubyte
├── Sparse DBN(Dynamic Bayesian Network)
│ └── Why are DBNs sparse.pdf
├── Unsupervised Pre-training
│ ├── The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training.pdf
│ └── Training RBM using Approximations to Likelihood Gradient(2008)
│ └── Training RBM using Approximations to LG.pdf
└── Why Does Unsupervised Pre-training Help Deep Learning(2010)
└── Why Does Unsupervised Pre-training Help Deep Learning.pdf
38 directories, 94 files
标签:
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论