实例介绍
本文对现有的语音识别技术发展现状进行了分析,首先介绍了语 音识别的基本理论,包括语音信号的预处理、端点检测和特征提取。 在此基础上,介绍了三个有效语音识别特征参数—线性预测编码系数 LPC、线性预测倒谱系数LPCC和美尔频率倒谱系数MFCC的具体提 取方法,其次分别讨论了隐马尔可夫模型HMM和人工网络模型ANN 在语音识别中的具体应用,介绍了它们各自的模型训练与识别算法, 最后针对HMM具有很强的对时间归整能力和ANN具有很强的分类 能力,利用它们各自的优点把HMM和ANN结合起来,实验证明, 混合后的模型HMM/ANN提高了语音识别的准确率和抗噪性,充分体 现了混合模型的可行性和有效性。
【实例截图】
【核心代码】
标签:
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论