实例介绍
MRMR mrmr (最小冗余)是一种“最小最佳”特征选择算法,这意味着在给定(少量)特征的情况下,它试图找到能够提供最佳分类的特征集。 如何安装 您可以通过以下方式在您的环境中安装mrmr : pip install git+https://github.com/smazzanti/mrmr 如何使用 您有一个由数字变量( X )和一个系列(二进制或多类)目标变量( y )组成的数据框。 您希望选择K个要素,以便它们具有最大的相关性,但又要使彼此之间的冗余度尽可能小。 from mrmr import mrmr_classif from sklearn.datasets import make_classification # create some data X, y = make_classification(n_samples = 1000, n_features = 50,
【实例截图】
【核心代码】
16359647928883968432.zip
└── mrmr-main
├── mrmr
│ ├── __init__.py
│ └── main.py
├── notebooks
│ └── mnist.ipynb
├── README.md
└── setup.py
3 directories, 5 files
标签:
mrmr:用于功能选择的mRMR(minimum-Redundancy-Maximum-Relevance)的Python实现-...
相关软件
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论