实例介绍
【实例简介】
一本很好的学习推荐系统的参考手册,全面而系统。由全球做推荐系统的研究人员参与编写。目录主干: 1 Introduction to Recommender Systems Handbook Part I Basic Techniques 2 Data Mining Methods for Recommender Systems 3 Content-based Recommender Systems: State of the Art and Trends 4 A Comprehensive Survey of Neighborhood-based Recommendation Methods 5 Advances in Collaborative Filtering 6 Developing Constraint-based Recommenders 7 Context-Aware Recommender Systems Part II Applications and Evaluation of RSs 8 Evaluating Recommendation Systems 9 A Recommender System for an IPTV Service Provider: a Real Large-Scale Production Environment. 10 How to Get the Recommender Out of the Lab? 11 Matching Recommendation Technologies and Domains 12 Recommender Systems in Technology Enhanced Learning Part III Interacting with Recommender Systems 13 On the Evolution of Critiquing Recommenders 14 Creating More Credible and Persuasive Recommender Systems:The Influence of Source Characteristics on Recommender System Evaluations 15 Designing and Evaluating Explanations for Recommender Systems 16 Usability Guidelines for Product Recommenders Based on Example Critiquing Research 17 Map Based Visualization of Product Catalogs Part IV Recommender Systems and Communities 18 Communities, Collaboration, and Recommender Systems in PersonalizedWeb Search 19 Social Tagging Recommender Systems 20 Trust and Recommendations 21 Group Recommender Systems: Combining Individual Models Part V Advanced Algorithms 22 Aggregation of Preferences in Recommender Systems 23 Active Learning in Recommender Systems 24 Multi-Criteria Recommender Systems 25 Robust Collaborative Recommendation
【实例截图】
【核心代码】
一本很好的学习推荐系统的参考手册,全面而系统。由全球做推荐系统的研究人员参与编写。目录主干: 1 Introduction to Recommender Systems Handbook Part I Basic Techniques 2 Data Mining Methods for Recommender Systems 3 Content-based Recommender Systems: State of the Art and Trends 4 A Comprehensive Survey of Neighborhood-based Recommendation Methods 5 Advances in Collaborative Filtering 6 Developing Constraint-based Recommenders 7 Context-Aware Recommender Systems Part II Applications and Evaluation of RSs 8 Evaluating Recommendation Systems 9 A Recommender System for an IPTV Service Provider: a Real Large-Scale Production Environment. 10 How to Get the Recommender Out of the Lab? 11 Matching Recommendation Technologies and Domains 12 Recommender Systems in Technology Enhanced Learning Part III Interacting with Recommender Systems 13 On the Evolution of Critiquing Recommenders 14 Creating More Credible and Persuasive Recommender Systems:The Influence of Source Characteristics on Recommender System Evaluations 15 Designing and Evaluating Explanations for Recommender Systems 16 Usability Guidelines for Product Recommenders Based on Example Critiquing Research 17 Map Based Visualization of Product Catalogs Part IV Recommender Systems and Communities 18 Communities, Collaboration, and Recommender Systems in PersonalizedWeb Search 19 Social Tagging Recommender Systems 20 Trust and Recommendations 21 Group Recommender Systems: Combining Individual Models Part V Advanced Algorithms 22 Aggregation of Preferences in Recommender Systems 23 Active Learning in Recommender Systems 24 Multi-Criteria Recommender Systems 25 Robust Collaborative Recommendation
【实例截图】
【核心代码】
标签:
好例子网口号:伸出你的我的手 — 分享!
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论