在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → 神经网络理论与MATLAB7实现

神经网络理论与MATLAB7实现

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:37.39M
  • 下载次数:27
  • 浏览次数:89
  • 发布时间:2021-10-31
  • 实例类别:一般编程问题
  • 发 布 人:js2021
  • 文件格式:.pdf
  • 所需积分:2
 

实例介绍

【实例简介】
第1章 概述 1.1 MATLAB语言简介 1.1.1 MATLAB概述 1.1.2 MATLAB语言特点 1.1.3 MATLAB 7的安装 1.1.4 MATLAB 7的新特点 1.1.5 MATLAB 7的新产品及更新产品 1.1.6 Simulink 6.0的新特点 1.2 MATLAB快速入门 1.2.1 命令行窗口 1.2.2 其他重要窗口 1.2.3 Editor/Debugger窗口 1.2.4 MATLAB帮助系统 1.2.5 神经网络工具箱快速入门 1.3 神经网络发展史 1.3.1 初期阶段 1.3.2 停滞期 1.3.3 黄金时期 1.3.4 发展展望 1.4 神经网络模型 1.4.1 神经元结构模型 1.4.2 神经网络的互连模式 1.5 神经网络的特性及实现 1.6 小结 第2章 神经网络工具箱函数及实例 2.1 概述 2.2 神经网络工具箱中的通用函数 2.2.1 神经网络仿真函数sim 2.2.2 神经网络训练及学习函数 2.2.3 神经网络初始化函数 2.2.4 神经网络输入函数 2.2.5 神经网络传递函数 2.2.6 其他重要函数 2.3 感知器的神经网络工具箱函数 2.3.1 感知器创建函数 2.3.2 显示函数 2.3.3 性能函数 2.4 BP网络的神经网络工具箱函数 2.4.1 BP网络创建函数 2.4.2 神经元上的传递函数 2.4.3 BP网络学习函数 2.4.4 BP网络训练函数 2.4.5 性能函数 2.4.6 显示函数 2.5 线性网络的神经网络工具箱函数 2.5.1 线性网络创建和设计函数 2.5.2 学习函数 2.6 自组织竞争网络的神经网络工具箱函数 2.6.1 神经网络创建函数 2.6.2 传递函数 2.6.3 距离函数 2.6.4 学习函数 2.6.5 初始化函数 2.6.6 权值函数 2.6.7 显示函数 2.6.8 结构函数 2.7 径向基网络的神经网络工具箱函数 2.7.1 神经网络创建函数 2.7.2 转换函数 2.7.3 传递函数 2.8 反馈网络的神经网络工具箱函数 2.8.1 Hopfield网络的工具箱函数 2.8.2 Elman网络的工具箱函数 2.9 小结 第3章 前向型神经网络理论及MATLAB实现 3.1 感知器网络及MATLAB实现 3.1.1 单层感知器网络 3.1.2 多层感知器 3.2 BP网络及MATLAB实现 3.2.1 BP网络理论 3.2.2 BP网络的MATLAB设计 3.3 线性神经网络及MATLAB实现 3.3.1 线性神经网络的结构 3.3.2 线性神经网络的学习 3.3.3 线性网络的MATLAB仿真 3.4 径向基函数网络及MATLAB实现 3.4.1 径向基网络结构 3.4.2 径向基函数的学习过程 3.4.3 RBF网络应用实例 3.4.4 基于RBF网络的非线性滤波 3.4.5 基于GRNN的函数逼近 3.4.6 基于概率神经网络的分类 3.5 GMDH网络及MATLAB实现 3.5.1 GMDH网络理论 3.5.2 GMDH网络的训练 3.5.3 基于GMDH网络的预测 3.6 小结 第4章 反馈型神经网络理论及MATLAB实现 4.1 Elman神经网络及应用 4.1.1 Elman神经网络结构 4.1.2 Elman神经网络的学习过程 4.1.3 Elman神经网络的工程应用 4.1.4 基于Elman网络的空调负荷预测 4.2 Hopfield神经网络及MATLAB实现 4.2.1 Hopfield网络描述 4.2.2 Hopfield网络的学习过程 4.2.3 几个重要结论 4.2.4 Hopfield网络的MATLAB开发 4.2.5 基于Hopfield网络的数字识别 4.3 CG网络模型及应用 4.3.1 CG神经网络理论 4.3.2 基于CG网络的有限元分析 4.4 盒中脑(BSB)模型及MATLAB实现 4.4.1 BSB神经网络模型描述 4.4.2 BSB的MATLAB实现 4.5 双向联想记忆(BAM)及MATLAB实现 4.5.1 Kosko型BAM网络模型 4.5.2 BAM网络的实例分析 4.6 回归BP网络及应用 4.6.1 回归BP网络概述 4.6.2 基于回归BP网络的房价预测 4.7 Boltzmann机网络及仿真 4.7.1 BM网络的基本结构 4.7.2 BM模型的工作规则和学习规则 4.7.3 BM网络的MATLAB仿真 4.8 小结 第5章 自组织与LVQ神经网络
【实例截图】
【核心代码】

标签:

实例下载地址

神经网络理论与MATLAB7实现

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警