在好例子网,分享、交流、成长!
您当前所在位置:首页MATLAB 开发实例MATLAB语言基础 → Computational Statistics Handbook with MATLAB by Wendy L. Martinez, Angel R. Martinez.pdf

Computational Statistics Handbook with MATLAB by Wendy L. Martinez, Angel R. Martinez.pdf

MATLAB语言基础

下载此实例

实例介绍

【实例简介】计算统计

【实例截图】

from clipboard

【核心代码】

Table of Contents
Preface to the Third Edition............................................................................... xix
Preface to the Second Edition............................................................................ xxi
Preface to the First Edition................................................................................ xxv
Chapter 1
Introduction
1.1 What Is Computational Statistics? .................................................................1
1.2 An Overview of the Book ...............................................................................3
Philosophy..................................................................................................... 3
What Is Covered ........................................................................................... 4
A Word About Notation.............................................................................. 5
1.3 MATLAB® Code ...............................................................................................6
Computational Statistics Toolbox .............................................................. 8
Internet Resources ........................................................................................ 8
1.4 Further Reading ...............................................................................................9
Chapter 2
Probability Concepts
2.1 Introduction ....................................................................................................11
2.2 Probability .......................................................................................................12
Background ................................................................................................. 12
Probability ................................................................................................... 14
Axioms of Probability................................................................................ 16
2.3 Conditional Probability and Independence ...............................................17
Conditional Probability ............................................................................. 17
Independence.............................................................................................. 18
Bayes’ Theorem........................................................................................... 19
2.4 Expectation ......................................................................................................21
Mean and Variance .................................................................................... 21
Skewness...................................................................................................... 23
Kurtosis........................................................................................................ 23
2.5 Common Distributions ..................................................................................24
Binomial....................................................................................................... 24
Poisson ......................................................................................................... 26
Uniform........................................................................................................ 29
Normal ......................................................................................................... 30
CompStats3.book Page ix Monday, November 16, 2015 1:55 PM
x Computational Statistics Handbook with MATLAB®, Third Edition
Exponential.................................................................................................. 34
Gamma......................................................................................................... 36
Chi-Square................................................................................................... 37
Weibull......................................................................................................... 38
Beta ............................................................................................................... 40
Student’s t Distribution ............................................................................. 42
Multivariate Normal .................................................................................. 43
Multivariate t Distribution........................................................................ 47
2.6 MATLAB® Code .............................................................................................48
2.7 Further Reading .............................................................................................49
Exercises ................................................................................................................51
Chapter 3
Sampling Concepts
3.1 Introduction ....................................................................................................55
3.2 Sampling Terminology and Concepts ........................................................55
Sample Mean and Sample Variance ........................................................ 57
Sample Moments ........................................................................................ 58
Covariance................................................................................................... 60
3.3 Sampling Distributions .................................................................................63
3.4 Parameter Estimation ....................................................................................65
Bias................................................................................................................ 66
Mean Squared Error................................................................................... 66
Relative Efficiency ...................................................................................... 67
Standard Error ............................................................................................ 67
Maximum Likelihood Estimation ............................................................ 68
Method of Moments................................................................................... 71
3.5 Empirical Distribution Function ..................................................................73
Quantiles...................................................................................................... 74
3.6 MATLAB® Code .............................................................................................78
3.7 Further Reading .............................................................................................79
Exercises ................................................................................................................80
Chapter 4
Generating Random Variables
4.1 Introduction ....................................................................................................83
4.2 General Techniques for Generating Random Variables ...........................83
Uniform Random Numbers...................................................................... 83
Inverse Transform Method ....................................................................... 86
Acceptance-Rejection Method .................................................................. 90
4.3 Generating Continuous Random Variables ...............................................94
Normal Distribution .................................................................................. 94
Exponential Distribution........................................................................... 94
Gamma......................................................................................................... 96
Chi-Square................................................................................................... 97
CompStats3.book Page x Monday, November 16, 2015 1:55 PM
Table of Contents xi
Beta ............................................................................................................... 99
Multivariate Normal ................................................................................ 101
Multivariate Student’s t Distribution .................................................... 103
Generating Variates on a Sphere............................................................ 105
4.4 Generating Discrete Random Variables ...................................................106
Binomial..................................................................................................... 106
Poisson ....................................................................................................... 108
Discrete Uniform ...................................................................................... 110
4.5 MATLAB® Code ...........................................................................................112
4.6 Further Reading ...........................................................................................114
Exercises ..............................................................................................................115
Chapter 5
Exploratory Data Analysis
5.1 Introduction ..................................................................................................117
5.2 Exploring Univariate Data ..........................................................................119
Histograms ................................................................................................ 119
Stem-and-Leaf........................................................................................... 122
Quantile-Based Plots — Continuous Distributions............................. 124
Quantile Plots — Discrete Distributions............................................... 132
Box Plots .................................................................................................... 138
5.3 Exploring Bivariate and Trivariate Data ...................................................143
Scatterplots ................................................................................................ 145
Surface Plots .............................................................................................. 147
Contour Plots ............................................................................................ 148
Bivariate Histogram ................................................................................. 149
3D Scatterplot............................................................................................ 155
5.4 Exploring Multi-Dimensional Data ...........................................................156
Scatterplot Matrix..................................................................................... 157
Slices and Isosurfaces............................................................................... 159
Glyphs ........................................................................................................ 164
Andrews Curves....................................................................................... 167
Parallel Coordinates................................................................................. 172
5.5 MATLAB® Code ...........................................................................................178
5.6 Further Reading ...........................................................................................180
Exercises ..............................................................................................................182
Chapter 6
Finding Structure
6.1 Introduction ..................................................................................................185
6.2 Projecting Data .............................................................................................186
6.3 Principal Component Analysis ..................................................................188
6.4 Projection Pursuit EDA ...............................................................................192
Projection Pursuit Index .......................................................................... 195
Finding the Structure ............................................................................... 196
CompStats3.book Page xi Monday, November 16, 2015 1:55 PM
xii Computational Statistics Handbook with MATLAB®, Third Edition
Structure Removal.................................................................................... 197
6.5 Independent Component Analysis ...........................................................202
6.6 Grand Tour ...................................................................................................209
6.7 Nonlinear Dimensionality Reduction .......................................................213
Multidimensional Scaling ....................................................................... 214
Isometric Feature Mapping (ISOMAP) ................................................. 217
6.8 MATLAB® Code ...........................................................................................222
6.9 Further Reading ...........................................................................................224
Exercises ..............................................................................................................227
Chapter 7
Monte Carlo Methods for Inferential Statistics
7.1 Introduction ..................................................................................................229
7.2 Classical Inferential Statistics .....................................................................230
Hypothesis Testing................................................................................... 230
Confidence Intervals ................................................................................ 239
7.3 Monte Carlo Methods for Inferential Statistics ........................................241
Basic Monte Carlo Procedure ................................................................. 242
Monte Carlo Hypothesis Testing ........................................................... 243
Monte Carlo Assessment of Hypothesis Testing................................. 248
7.4 Bootstrap Methods .......................................................................................252
General Bootstrap Methodology............................................................ 252
Bootstrap Estimate of Standard Error ................................................... 254
Bootstrap Estimate of Bias....................................................................... 257
Bootstrap Confidence Intervals.............................................................. 258
7.5 MATLAB® Code ...........................................................................................264
7.6 Further Reading ...........................................................................................265
Exercises ..............................................................................................................266
Chapter 8
Data Partitioning
8.1 Introduction ..................................................................................................269
8.2 Cross-Validation ...........................................................................................270
8.3 Jackknife ........................................................................................................277
8.4 Better Bootstrap Confidence Intervals ......................................................285
8.5 Jackknife-After-Bootstrap ...........................................................................289
8.6 MATLAB® Code ...........................................................................................292
8.7 Further Reading ...........................................................................................293
Exercises ..............................................................................................................293
Chapter 9
Probability Density Estimation
9.1 Introduction ..................................................................................................297
9.2 Histograms ....................................................................................................299
CompStats3.book Page xii Monday, November 16, 2015 1:55 PM
Table of Contents xiii
1D Histograms .......................................................................................... 299
Multivariate Histograms ......................................................................... 306
Frequency Polygons................................................................................. 307
Averaged Shifted Histograms ................................................................ 312
9.3 Kernel Density Estimation ..........................................................................318
Univariate Kernel Estimators ................................................................. 318
Multivariate Kernel Estimators .............................................................. 323
9.4 Finite Mixtures .............................................................................................325
Univariate Finite Mixtures ...................................................................... 327
Visualizing Finite Mixtures..................................................................... 329
Multivariate Finite Mixtures................................................................... 331
EM Algorithm for Estimating the Parameters ..................................... 334
Adaptive Mixtures ................................................................................... 339
9.5 Generating Random Variables ...................................................................344
9.6 MATLAB® Code ...........................................................................................352
9.7 Further Reading ...........................................................................................352
Exercises ..............................................................................................................354
Chapter 10
Supervised Learning
10.1 Introduction ................................................................................................359
10.2 Bayes Decision Theory ..............................................................................361
Estimating Class-Conditional Probabilities: Parametric Method ..... 363
Naive Bayes Classifiers............................................................................ 365
Estimating Class-Conditional Probabilities: Nonparametric............. 365
Bayes Decision Rule ................................................................................. 367
Likelihood Ratio Approach..................................................................... 372
10.3 Evaluating the Classifier ...........................................................................376
Independent Test Sample........................................................................ 376
Cross-Validation....................................................................................... 378
Receiver Operating Characteristic (ROC) Curve................................. 381
10.4 Classification Trees ....................................................................................387
Growing the Tree...................................................................................... 390
Pruning the Tree ....................................................................................... 394
Choosing the Best Tree ............................................................................ 398
Other Tree Methods ................................................................................. 407
10.5 Combining Classifiers ...............................................................................410
Bagging ...................................................................................................... 410
Boosting ..................................................................................................... 413
Arcing Classifiers ..................................................................................... 416
Random Forests ........................................................................................ 418
10.6 Nearest Neighbor Classifier .....................................................................419
10.7 Support Vector Machines .........................................................................422
Maximal Margin Classifier...................................................................... 422
Support Vector Classifier ........................................................................ 426
CompStats3.book Page xiii Monday, November 16, 2015 1:55 PM
xiv Computational Statistics Handbook with MATLAB®, Third Edition
Support Vector Machines........................................................................ 427
10.8 MATLAB® Code .........................................................................................433
10.9 Further Reading .........................................................................................436
Exercises ..............................................................................................................437
Chapter 11
Unsupervised Learning
11.1 Introduction ................................................................................................441
11.2 Measures of Distance .................................................................................442
11.3 Hierarchical Clustering .............................................................................444
11.4 K-Means Clustering ...................................................................................452
11.5 Model-Based Clustering ............................................................................455
Finite Mixture Models and the EM Algorithm .................................... 456
Model-Based Agglomerative Clustering .............................................. 460
Bayesian Information Criterion.............................................................. 463
Model-Based Clustering Procedure....................................................... 463
11.6 Assessing Cluster Results .........................................................................468
Mojena – Upper Tail Rule ....................................................................... 468
Silhouette Statistic .................................................................................... 469
Other Methods for Evaluating Clusters................................................ 472
11.7 MATLAB® Code .........................................................................................475
11.8 Further Reading .........................................................................................477
Exercises ..............................................................................................................478
Chapter 12
Parametric Models
12.1 Introduction ................................................................................................481
12.2 Spline Regression Models .........................................................................487
12.3 Logistic Regression ....................................................................................492
Creating the Model .................................................................................. 492
Interpreting the Model Parameters........................................................ 496
12.4 Generalized Linear Models ......................................................................498
Exponential Family Form........................................................................ 499
Generalized Linear Model ...................................................................... 504
Model Checking........................................................................................ 509
12.5 Model Selection and Regularization .......................................................517
Best Subset Selection ................................................................................ 518
Stepwise Regression................................................................................. 519
Ridge Regression ...................................................................................... 521
Lasso—Least Absolute Shrinkage and Selection Operator................ 527
Elastic Net.................................................................................................. 529
12.6 Partial Least Squares Regression .............................................................532
Principal Component Regression .......................................................... 533
Partial Least Squares Regression............................................................ 535
12.7 MATLAB® Code .........................................................................................538
CompStats3.book Page xiv Monday, November 16, 2015 1:55 PM
Table of Contents xv
12.8 Further Reading .........................................................................................540
Exercises ..............................................................................................................540
Chapter 13
Nonparametric Models
13.1 Introduction ................................................................................................543
13.2 Some Smoothing Methods ........................................................................544
Bin Smoothing........................................................................................... 545
Running Mean .......................................................................................... 547
Running Line............................................................................................. 548
Local Polynomial Regression – Loess.................................................... 549
Robust Loess ............................................................................................. 555
13.3 Kernel Methods ..........................................................................................558
Nadaraya–Watson Estimator.................................................................. 561
Local Linear Kernel Estimator................................................................ 562
13.4 Smoothing Splines .....................................................................................565
Natural Cubic Splines.............................................................................. 565
Reinsch Method for Finding Smoothing Splines................................. 567
Values for a Cubic Smoothing Spline.................................................... 569
Weighted Smoothing Spline ................................................................... 570
13.5 Nonparametric Regression – Other Details ...........................................572
Choosing the Smoothing Parameter...................................................... 572
Estimation of the Residual Variance...................................................... 577
Variability of Smooths ............................................................................. 577
13.6 Regression Trees .........................................................................................581
Growing a Regression Tree..................................................................... 583
Pruning a Regression Tree ...................................................................... 585
Selecting a Tree ......................................................................................... 587
13.7 Additive Models ........................................................................................591
13.8 Multivariate Adaptive Regression Splines .............................................597
13.9 MATLAB® Code .........................................................................................605
13.10 Further Reading .......................................................................................608
Exercises ..............................................................................................................610
Chapter 14
Markov Chain Monte Carlo Methods
14.1 Introduction ................................................................................................613
14.2 Background .................................................................................................614
Bayesian Inference.................................................................................... 614
Monte Carlo Integration.......................................................................... 615
Markov Chains ......................................................................................... 617
Analyzing the Output.............................................................................. 618
14.3 Metropolis-Hastings Algorithms .............................................................618
Metropolis-Hastings Sampler................................................................. 619
Metropolis Sampler.................................................................................. 621
CompStats3.book Page xv Monday, November 16, 2015 1:55 PM
xvi Computational Statistics Handbook with MATLAB®, Third Edition
Independence Sampler ............................................................................ 626
Autoregressive Generating Density ...................................................... 627
14.4 The Gibbs Sampler .....................................................................................630
14.5 Convergence Monitoring ..........................................................................640
Gelman and Rubin Method .................................................................... 642
Raftery and Lewis Method...................................................................... 645
14.6 MATLAB® Code .........................................................................................647
14.7 Further Reading .........................................................................................648
Exercises ..............................................................................................................649
Appendix A
MATLAB® Basics
A.1 Desktop Environment ................................................................................653
A.2 Getting Help and Other Documentation .................................................655
A.3 Data Import and Export .............................................................................656
Data Import and Export in Base MATLAB .......................................... 656
Data Import and Export with the Statistics Toolbox........................... 658
A.4 Data in MATLAB® ......................................................................................659
Data Objects in Base MATLAB............................................................... 659
Accessing Data Elements ........................................................................ 662
Object-Oriented Programming............................................................... 665
A.5 Workspace and Syntax ...............................................................................665
File and Workspace Management.......................................................... 666
Syntax in MATLAB .................................................................................. 667
Functions in MATLAB............................................................................. 669
A.6 Basic Plot Functions ....................................................................................670
Plotting 2D Data ....................................................................................... 670
Plotting 3D Data ....................................................................................... 673
Scatterplots ................................................................................................ 674
Scatterplot Matrix..................................................................................... 675
GUIs for Graphics..................................................................................... 675
A.7 Summary and Further Reading ................................................................677
Appendix B
Projection Pursuit Indexes
B.1 Friedman-Tukey Index ...............................................................................681
B.2 Entropy Index ..............................................................................................682
B.3 Moment Index ..............................................................................................682
B.4 Distances .......................................................................................................683
Appendix C
Data Sets
C.1 Introduction .................................................................................................685
C.2 Descriptions .................................................................................................685
CompStats3.book Page xvi Monday, November 16, 2015 1:55 PM
Table of Contents xvii
Appendix D
Notation
D.1 Observed Data .............................................................................................695
D.2 Greek Letters ................................................................................................696
D.3 Functions and Distributions ......................................................................696
D.4 Matrix Notation ...........................................................................................696
D.5 Statistics ........................................................................................................697
References ........................................................................................................... 699

实例下载地址

Computational Statistics Handbook with MATLAB by Wendy L. Martinez, Angel R. Martinez.pdf

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警