实例介绍
【实例简介】Calculus, 11th Edition
【实例截图】
【核心代码】
Contents P Preparation for Calculus 1 P.1 Graphs and Models 2 P.2 Linear Models and Rates of Change 10 P.3 Functions and Their Graphs 19 P.4 Review of Trigonometric Functions 31 Review Exercises 41 P.S. Problem Solving 43 1 Limits and Their Properties 45 1.1 A Preview of Calculus 46 1.2 Finding Limits Graphically and Numerically 52 1.3 Evaluating Limits Analytically 63 1.4 Continuity and One-Sided Limits 74 1.5 Infinite Limits 87 Section Project: Graphs and Limits of Trigonometric Functions 94 Review Exercises 95 P.S. Problem Solving 97 2 Differentiation 99 2.1 The Derivative and the Tangent Line Problem 100 2.2 Basic Differentiation Rules and Rates of Change 110 2.3 Product and Quotient Rules and Higher-Order Derivatives 122 2.4 The Chain Rule 133 2.5 Implicit Differentiation 144 Section Project: Optical Illusions 151 2.6 Related Rates 152 Review Exercises 161 P.S. Problem Solving 163 3 Applications of Differentiation 165 3.1 Extrema on an Interval 166 3.2 Rolle’s Theorem and the Mean Value Theorem 174 3.3 Increasing and Decreasing Functions and the First Derivative Test 181 Section Project: Even Fourth-Degree Polynomials 190 3.4 Concavity and the Second Derivative Test 191 3.5 Limits at Infinity 199 3.6 A Summary of Curve Sketching 209 3.7 Optimization Problems 219 Section Project: Minimum Time 228 3.8 Newton’s Method 229 3.9 Differentials 235 Review Exercises 242 P.S. Problem Solving 245 iv Contents 4 Integration 247 4.1 Antiderivatives and Indefinite Integration 248 4.2 Area 258 4.3 Riemann Sums and Definite Integrals 270 4.4 The Fundamental Theorem of Calculus 281 Section Project: Demonstrating the Fundamental Theorem 295 4.5 Integration by Substitution 296 Review Exercises 309 P.S. Problem Solving 311 5 Logarithmic, Exponential, and Other Transcendental Functions 313 5.1 The Natural Logarithmic Function: Differentiation 314 5.2 The Natural Logarithmic Function: Integration 324 5.3 Inverse Functions 333 5.4 Exponential Functions: Differentiation and Integration 342 5.5 Bases Other than e and Applications 352 Section Project: Using Graphing Utilities to Estimate Slope 361 5.6 Indeterminate Forms and L’Hôpital’s Rule 362 5.7 Inverse Trigonometric Functions: Differentiation 373 5.8 Inverse Trigonometric Functions: Integration 382 5.9 Hyperbolic Functions 390 Section Project: Mercator Map 399 Review Exercises 400 P.S. Problem Solving 403 6 Differential Equations 405 6.1 Slope Fields and Euler’s Method 406 6.2 Growth and Decay 415 6.3 Separation of Variables and the Logistic Equation 423 6.4 First-Order Linear Differential Equations 432 Section Project: Weight Loss 438 Review Exercises 439 P.S. Problem Solving 441 7 Applications of Integration 443 7.1 Area of a Region Between Two Curves 444 7.2 Volume: The Disk Method 454 7.3 Volume: The Shell Method 465 Section Project: Saturn 473 7.4 Arc Length and Surfaces of Revolution 474 7.5 Work 485 Section Project: Pyramid of Khufu 493 7.6 Moments, Centers of Mass, and Centroids 494 7.7 Fluid Pressure and Fluid Force 505 Review Exercises 511 P.S. Problem Solving 513 Contents v 8 Integration Techniques and Improper Integrals 515 8.1 Basic Integration Rules 516 8.2 Integration by Parts 523 8.3 Trigonometric Integrals 532 Section Project: The Wallis Product 540 8.4 Trigonometric Substitution 541 8.5 Partial Fractions 550 8.6 Numerical Integration 559 8.7 Integration by Tables and Other Integration Techniques 566 8.8 Improper Integrals 572 Review Exercises 583 P.S. Problem Solving 585 9 Infinite Series 587 9.1 Sequences 588 9.2 Series and Convergence 599 Section Project: Cantor’s Disappearing Table 608 9.3 The Integral Test and p-Series 609 Section Project: The Harmonic Series 615 9.4 Comparisons of Series 616 9.5 Alternating Series 623 9.6 The Ratio and Root Tests 631 9.7 Taylor Polynomials and Approximations 640 9.8 Power Series 651 9.9 Representation of Functions by Power Series 661 9.10 Taylor and Maclaurin Series 668 Review Exercises 680 P.S. Problem Solving 683 10 Conics, Parametric Equations, and Polar Coordinates 685 10.1 Conics and Calculus 686 10.2 Plane Curves and Parametric Equations 700 Section Project: Cycloids 709 10.3 Parametric Equations and Calculus 710 10.4 Polar Coordinates and Polar Graphs 719 Section Project: Cassini Oval 728 10.5 Area and Arc Length in Polar Coordinates 729 10.6 Polar Equations of Conics and Kepler’s Laws 738 Review Exercises 746 P.S. Problem Solving 749 vi Contents 11 Vectors and the Geometry of Space 751 11.1 Vectors in the Plane 752 11.2 Space Coordinates and Vectors in Space 762 11.3 The Dot Product of Two Vectors 770 11.4 The Cross Product of Two Vectors in Space 779 11.5 Lines and Planes in Space 787 Section Project: Distances in Space 797 11.6 Surfaces in Space 798 11.7 Cylindrical and Spherical Coordinates 808 Review Exercises 815 P.S. Problem Solving 817 12 Vector-Valued Functions 819 12.1 Vector-Valued Functions 820 Section Project: Witch of Agnesi 827 12.2 Differentiation and Integration of Vector-Valued Functions 828 12.3 Velocity and Acceleration 836 12.4 Tangent Vectors and Normal Vectors 845 12.5 Arc Length and Curvature 855 Review Exercises 867 P.S. Problem Solving 869 13 Functions of Several Variables 871 13.1 Introduction to Functions of Several Variables 872 13.2 Limits and Continuity 884 13.3 Partial Derivatives 894 13.4 Differentials 904 13.5 Chain Rules for Functions of Several Variables 911 13.6 Directional Derivatives and Gradients 919 13.7 Tangent Planes and Normal Lines 931 Section Project: Wildflowers 939 13.8 Extrema of Functions of Two Variables 940 13.9 Applications of Extrema 948 Section Project: Building a Pipeline 955 13.10 Lagrange Multipliers 956 Review Exercises 964 P.S. Problem Solving 967 14 Multiple Integration 969 14.1 Iterated Integrals and Area in the Plane 970 14.2 Double Integrals and Volume 978 14.3 Change of Variables: Polar Coordinates 990 14.4 Center of Mass and Moments of Inertia 998 Section Project: Center of Pressure on a Sail 1005 14.5 Surface Area 1006 Section Project: Surface Area in Polar Coordinates 1012 14.6 Triple Integrals and Applications 1013 14.7 Triple Integrals in Other Coordinates 1024 Section Project: Wrinkled and Bumpy Spheres 1030 14.8 Change of Variables: Jacobians 1031 Review Exercises 1038 P.S. Problem Solving 1041 Contents vii 15 Vector Analysis 1043 15.1 Vector Fields 1044 15.2 Line Integrals 1055 15.3 Conservative Vector Fields and Independence of Path 1069 15.4 Green’s Theorem 1079 Section Project: Hyperbolic and Trigonometric Functions 1087 15.5 Parametric Surfaces 1088 15.6 Surface Integrals 1098 Section Project: Hyperboloid of One Sheet 1109 15.7 Divergence Theorem 1110 15.8 Stokes’s Theorem 1118 Review Exercises 1124 P.S. Problem Solving 1127 16 Additional Topics in Differential Equations (Online)* 16.1 Exact First-Order Equations 16.2 Second-Order Homogeneous Linear Equations 16.3 Second-Order Nonhomogeneous Linear Equations Section Project: Parachute Jump 16.4 Series Solutions of Differential Equations Review Exercises P.S. Problem Solving Appendices Appendix A: Proofs of Selected Theorems A2 Appendix B: Integration Tables A3 Appendix C: Precalculus Review (Online)* Appendix D: Rotation and the General Second-Degree Equation (Online)* Appendix E: Complex Numbers (Online)* Appendix F: Business and Economic Applications (Online)* Appendix G: Fitting Models to Data (Online)* Answers to All Odd-Numbered Exercises A7 Index A121
好例子网口号:伸出你的我的手 — 分享!
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论