在好例子网,分享、交流、成长!
您当前所在位置:首页C/C++ 开发实例C/C++语言基础 → 微电子电路设计(MICROELECTRONIC CIRCUIT DESIGN).pdf

微电子电路设计(MICROELECTRONIC CIRCUIT DESIGN).pdf

C/C++语言基础

下载此实例
  • 开发语言:C/C++
  • 实例大小:14.32M
  • 下载次数:21
  • 浏览次数:505
  • 发布时间:2021-05-31
  • 实例类别:C/C++语言基础
  • 发 布 人:qsh666888
  • 文件格式:.pdf
  • 所需积分:5
 相关标签: 微电子

实例介绍

【实例简介】微电子图书:MICROELECTRONIC CIRCUIT DESIGN RICHARD C. JAEGER • TRAVIS N. BLALOCK

【实例截图】英文版

【核心代码】

CONTENTS
Preface xx
Chapter-by-Chapter Summary xxv
PART ONE
SOLID-STATE ELECTRONICS
AND DEVICES 1
CHAPTER 1
INTRODUCTION TO ELECTRONICS 3
1.1 A Brief History of Electronics: From
Vacuum Tubes to Giga-Scale Integration 5
1.2 Classification of Electronic Signals 8
1.2.1 Digital Signals 9
1.2.2 Analog Signals 9
1.2.3 A/D and D/A Converters—Bridging
the Analog and Digital
Domains 10
1.3 Notational Conventions 12
1.4 Problem-Solving Approach 13
1.5 Important Concepts from Circuit
Theory 15
1.5.1 Voltage and Current Division 15
1.5.2 Thévenin and Norton Circuit
Representations 16
1.6 Frequency Spectrum of Electronic
Signals 21
1.7 Amplifiers 22
1.7.1 Ideal Operational Amplifiers 23
1.7.2 Amplifier Frequency Response 25
1.8 Element Variations in Circuit Design 26
1.8.1 Mathematical Modeling of
Tolerances 26
1.8.2 Worst-Case Analysis 27
1.8.3 Monte Carlo Analysis 29
1.8.4 Temperature Coefficients 32
1.9 Numeric Precision 34
Summary 34
Key Terms 35
References 36
Additional Reading 36
Problems 36
CHAPTER 2
SOLID-STATE ELECTRONICS 41
2.1 Solid-State Electronic Materials 43
2.2 Covalent Bond Model 44
2.3 Drift Currents and Mobility in
Semiconductors 47
2.3.1 Drift Currents 47
2.3.2 Mobility 48
2.3.3 Velocity Saturation 48
2.4 Resistivity of Intrinsic Silicon 49
2.5 Impurities in Semiconductors 50
2.5.1 Donor Impurities in Silicon 51
2.5.2 Acceptor Impurities in Silicon 51
2.6 Electron and Hole Concentrations in
Doped Semiconductors 51
2.6.1 n-Type Material (ND > NA) 52
2.6.2 p-Type Material (NA>ND ) 53
2.7 Mobility and Resistivity in Doped
Semiconductors 54
2.8 Diffusion Currents 58
2.9 Total Current 59
2.10 Energy Band Model 60
2.10.1 Electron—Hole Pair Generation in
an Intrinsic Semiconductor 60
2.10.2 Energy Band Model for a Doped
Semiconductor 61
2.10.3 Compensated Semiconductors 61
2.11 Overview of Integrated Circuit
Fabrication 63
Summary 66
Key Terms 67
Reference 68
Additional Reading 68
Problems 68
CHAPTER 3
SOLID-STATE DIODES AND DIODE CIRCUITS 72
3.1 The pn Junction Diode 73
3.1.1 pn Junction Electrostatics 73
3.1.2 Internal Diode Currents 77
3.2 The i-v Characteristics of the Diode 78
vii
viii Contents
3.3 The Diode Equation: A Mathematical
Model for the Diode 80
3.4 Diode Characteristics under Reverse, Zero,
and Forward Bias 83
3.4.1 Reverse Bias 83
3.4.2 Zero Bias 83
3.4.3 Forward Bias 84
3.5 Diode Temperature Coefficient 86
3.6 Diodes under Reverse Bias 86
3.6.1 Saturation Current in Real
Diodes 87
3.6.2 Reverse Breakdown 89
3.6.3 Diode Model for the Breakdown
Region 90
3.7 pn Junction Capacitance 90
3.7.1 Reverse Bias 90
3.7.2 Forward Bias 91
3.8 Schottky Barrier Diode 93
3.9 Diode SPICE Model and Layout 93
3.9.1 Diode Layout 94
3.10 Diode Circuit Analysis 95
3.10.1 Load-Line Analysis 96
3.10.2 Analysis Using the Mathematical
Model for the Diode 97
3.10.3 The Ideal Diode Model 101
3.10.4 Constant Voltage Drop Model 103
3.10.5 Model Comparison and
Discussion 104
3.11 Multiple-Diode Circuits 105
3.12 Analysis of Diodes Operating in the
Breakdown Region 108
3.12.1 Load-Line Analysis 108
3.12.2 Analysis with the Piecewise
Linear Model 108
3.12.3 Voltage Regulation 109
3.12.4 Analysis Including Zener
Resistance 110
3.12.5 Line and Load Regulation 111
3.13 Half-Wave Rectifier Circuits 112
3.13.1 Half-Wave Rectifier with Resistor
Load 112
3.13.2 Rectifier Filter Capacitor 113
3.13.3 Half-Wave Rectifier with RC Load 114
3.13.4 Ripple Voltage and Conduction
Interval 115
3.13.5 Diode Current 117
3.13.6 Surge Current 119
3.13.7 Peak-Inverse-Voltage (PIV) Rating 119
3.13.8 Diode Power Dissipation 119
3.13.9 Half-Wave Rectifier with Negative
Output Voltage 120
3.14 Full-Wave Rectifier Circuits 122
3.14.1 Full-Wave Rectifier with Negative
Output Voltage 123
3.15 Full-Wave Bridge Rectification 123
3.16 Rectifier Comparison and Design
Tradeoffs 124
3.17 Dynamic Switching Behavior of the Diode 128
3.18 Photo Diodes, Solar Cells, and
Light-Emitting Diodes 129
3.18.1 Photo Diodes and
Photodetectors 129
3.18.2 Power Generation from Solar Cells 130
3.18.3 Light-Emitting Diodes (LEDs) 131
Summary 132
Key Terms 133
Reference 134
Additional Reading 134
Problems 134
CHAPTER 4
FIELD-EFFECT TRANSISTORS 144
4.1 Characteristics of the MOS Capacitor 145
4.1.1 Accumulation Region 146
4.1.2 Depletion Region 147
4.1.3 Inversion Region 147
4.2 The NMOS Transistor 147
4.2.1 Qualitative i-v Behavior of the
NMOS Transistor 148
4.2.2 Triode Region Characteristics of
the NMOS Transistor 149
4.2.3 On Resistance 152
4.2.4 Transconductance 153
4.2.5 Saturation of the i-v
Characteristics 154
4.2.6 Mathematical Model in the
Saturation (Pinch-Off)
Region 155
4.2.7 Transconductance in Saturation 156
4.2.8 Channel-Length Modulation 156
4.2.9 Transfer Characteristics and
Depletion-Mode MOSFETs 157
4.2.10 Body Effect or Substrate
Sensitivity 159
4.3 PMOS Transistors 160
4.4 MOSFET Circuit Symbols 162
4.5 Capacitances in MOS Transistors 165
4.5.1 NMOS Transistor Capacitances in
the Triode Region 165
4.5.2 Capacitances in the Saturation
Region 166
4.5.3 Capacitances in Cutoff 166
4.6 MOSFET Modeling in SPICE 167
4.7 MOS Transistor Scaling 168
4.7.1 Drain Current 169
4.7.2 Gate Capacitance 169
4.7.3 Circuit and Power Densities 169
Contents ix
4.7.4 Power-Delay Product 170
4.7.5 Cutoff Frequency 170
4.7.6 High Field Limitations 171
4.7.7 The Unified MOS Transistor Model
Including High Field Limitations 172
4.7.8 Subthreshold Conduction 173
4.8 MOS Transistor Fabrication and Layout
Design Rules 174
4.8.1 Minimum Feature Size and
Alignment Tolerance 174
4.8.2 MOS Transistor Layout 174
4.9 Biasing the NMOS Field-Effect
Transistor 178
4.9.1 Why Do We Need Bias? 178
4.9.2 Four-Resistor Biasing 180
4.9.3 Constant Gate-Source Voltage
Bias 184
4.9.4 Graphical Analysis for the
Q-Point 184
4.9.5 Analysis Including Body Effect 184
4.9.6 Analysis Using the Unified
Model 187
4.10 Biasing the PMOS Field-Effect Transistor 188
4.11 The Junction Field-Effect Transistor
(JFET) 190
4.11.1 The JFET with Bias Applied 191
4.11.2 JFET Channel with Drain-Source
Bias 193
4.11.3 n-Channel JFET i-v Characteristics 193
4.11.4 The p-Channel JFET 195
4.11.5 Circuit Symbols and JFET Model
Summary 195
4.11.6 JFET Capacitances 196
4.12 JFET Modeling in Spice 196
4.13 Biasing the JFET and Depletion-Mode
MOSFET 197
Summary 200
Key Terms 202
References 202
Problems 203
CHAPTER 5
BIPOLAR JUNCTION TRANSISTORS 215
5.1 Physical Structure of the Bipolar
Transistor 216
5.2 The Transport Model for the npn
Transistor 217
5.2.1 Forward Characteristics 218
5.2.2 Reverse Characteristics 220
5.2.3 The Complete Transport Model
Equations for Arbitrary Bias
Conditions 221
5.3 The pnp Transistor 223
5.4 Equivalent Circuit Representations for the
Transport Models 225
5.5 The i-v Characteristics of the Bipolar
Transistor 226
5.5.1 Output Characteristics 226
5.5.2 Transfer Characteristics 227
5.6 The Operating Regions of the Bipolar
Transistor 227
5.7 Transport Model Simplifications 228
5.7.1 Simplified Model for the Cutoff
Region 229
5.7.2 Model Simplifications for the
Forward-Active Region 231
5.7.3 Diodes in Bipolar Integrated
Circuits 237
5.7.4 Simplified Model for the
Reverse-Active Region 238
5.7.5 Modeling Operation in the
Saturation Region 240
5.8 Nonideal Behavior of the Bipolar
Transistor 243
5.8.1 Junction Breakdown Voltages 244
5.8.2 Minority-Carrier Transport in the
Base Region 244
5.8.3 Base Transit Time 245
5.8.4 Diffusion Capacitance 247
5.8.5 Frequency Dependence of the
Common-Emitter Current Gain 248
5.8.6 The Early Effect and Early
Voltage 248
5.8.7 Modeling the Early Effect 249
5.8.8 Origin of the Early Effect 249
5.9 Transconductance 250
5.10 Bipolar Technology and SPICE Model 251
5.10.1 Qualitative Description 251
5.10.2 SPICE Model Equations 252
5.10.3 High-Performance Bipolar
Transistors 253
5.11 Practical Bias Circuits for the BJT 254
5.11.1 Four-Resistor Bias Network 256
5.11.2 Design Objectives for the
Four-Resistor Bias Network 258
5.11.3 Iterative Analysis of the
Four-Resistor Bias Circuit 262
5.12 Tolerances in Bias Circuits 262
5.12.1 Worst-Case Analysis 263
5.12.2 Monte Carlo Analysis 265
Summary 268
Key Terms 270
References 270
Problems 271
x Contents
PART TWO
DIGITAL ELECTRONICS 281
CHAPTER 6
INTRODUCTION TO DIGITAL ELECTRONICS 283
6.1 Ideal Logic Gates 285
6.2 Logic Level Definitions and Noise
Margins 285
6.2.1 Logic Voltage Levels 287
6.2.2 Noise Margins 287
6.2.3 Logic Gate Design Goals 288
6.3 Dynamic Response of Logic Gates 289
6.3.1 Rise Time and Fall Time 289
6.3.2 Propagation Delay 290
6.3.3 Power-Delay Product 290
6.4 Review of Boolean Algebra 291
6.5 NMOS Logic Design 293
6.5.1 NMOS Inverter with Resistive
Load 294
6.5.2 Design of the W/L Ratio of MS 295
6.5.3 Load Resistor Design 296
6.5.4 Load-Line Visualization 296
6.5.5 On-Resistance of the Switching
Device 298
6.5.6 Noise Margin Analysis 299
6.5.7 Calculation of VI L and VO H 299
6.5.8 Calculation of VI H and VO L 300
6.5.9 Resistor Load Inverter Noise
Margins 300
6.5.10 Load Resistor Problems 301
6.6 Transistor Alternatives to the Load
Resistor 302
6.6.1 The NMOS Saturated Load
Inverter 303
6.6.2 NMOS Inverter with a Linear Load
Device 311
6.6.3 NMOS Inverter with a
Depletion-Mode Load 312
6.7 NMOS Inverter Summary and Comparison 315
6.8 Impact of Velocity Saturation on Static
Inverter Design 316
6.8.1 Switching Transistor Design 316
6.8.2 Load Transistor Design 316
6.8.3 Velocity Saturation Impact
Summary 317
6.9 NMOS NAND and NOR Gates 317
6.9.1 NOR Gates 318
6.9.2 NAND Gates 319
6.9.3 NOR and NAND Gate Layouts in
NMOS Depletion-Mode
Technology 320
6.10 Complex NMOS Logic Design 321
6.11 Power Dissipation 326
6.11.1 Static Power Dissipation 326
6.11.2 Dynamic Power Dissipation 327
6.11.3 Power Scaling in MOS Logic
Gates 328
6.12 Dynamic Behavior of MOS Logic Gates 329
6.12.1 Capacitances in Logic
Circuits 330
6.12.2 Dynamic Response of the NMOS
Inverter with a Resistive Load 331
6.12.3 Comparison of NMOS Inverter
Delays 336
6.12.4 Impact of Velocity Saturation on
Inverter Delays 337
6.12.5 Scaling Based upon Reference
Circuit Simulation 337
6.12.6 Ring Oscillator Measurement of
Intrinsic Gate Delay 338
6.12.7 Unloaded Inverter Delay 338
6.13 PMOS Logic 341
6.13.1 PMOS Inverters 341
6.13.2 NOR and NAND Gates 343
Summary 344
Key Terms 346
References 347
Additional Reading 347
Problems 347
CHAPTER 7
COMPLEMENTARY MOS (CMOS) LOGIC
DESIGN 359
7.1 CMOS Inverter Technology 360
7.1.1 CMOS Inverter Layout 362
7.2 Static Characteristics of the CMOS Inverter 362
7.2.1 CMOS Voltage Transfer
Characteristics 363
7.2.2 Noise Margins for the CMOS
Inverter 365
7.3 Dynamic Behavior of the CMOS
Inverter 367
7.3.1 Propagation Delay Estimate 367
7.3.2 Rise and Fall Times 369
7.3.3 Performance Scaling 369
7.3.4 Impact of Velocity Saturation on
CMOS Inverter Delays 371
7.3.5 Delay of Cascaded Inverters 372
7.4 Power Dissipation and Power Delay
Product in CMOS 373
7.4.1 Static Power Dissipation 373
7.4.2 Dynamic Power Dissipation 374
7.4.3 Power-Delay Product 375
7.5 CMOS NOR and NAND Gates 377
7.5.1 CMOS NOR Gate 377
7.5.2 CMOS NAND Gates 380
Contents xi
7.6 Design of Complex Gates in CMOS 381
7.7 Minimum Size Gate Design and
Performance 387
7.8 Cascade Buffers 389
7.8.1 Cascade Buffer Delay Model 389
7.8.2 Optimum Number of Stages 390
7.9 The CMOS Transmission Gate 392
7.10 Bistable Circuits 393
7.10.1 The Bistable Latch 393
7.10.2 RS Flip-Flop 396
7.10.3 The D-Latch Using Transmission
Gates 397
7.10.4 A Master-Slave D Flip-Flop 397
7.11 CMOS Latchup 397
Summary 402
Key Terms 403
References 404
Problems 404
CHAPTER 8
MOS MEMORY CIRCUITS 414
8.1 Random-Access Memory (RAM) 415
8.1.1 Random-Access Memory (RAM)
Architecture 415
8.1.2 A 256-Mb Memory Chip 416
8.2 Static Memory Cells 417
8.2.1 Memory Cell Isolation and
Access—the 6-T Cell 417
8.2.2 The Read Operation 418
8.2.3 Writing Data into the 6-T Cell 422
8.3 Dynamic Memory Cells 424
8.3.1 The One-Transistor Cell 425
8.3.2 Data Storage in the 1-T Cell 425
8.3.3 Reading Data from the 1-T Cell 427
8.3.4 The Four-Transistor Cell 428
8.4 Sense Amplifiers 430
8.4.1 A Sense Amplifier for the 6-T Cell 430
8.4.2 A Sense Amplifier for the 1-T Cell 432
8.4.3 The Boosted Wordline Circuit 433
8.4.4 Clocked CMOS Sense
Amplifiers 434
8.5 Address Decoders 436
8.5.1 NOR Decoder 436
8.5.2 NAND Decoder 436
8.5.3 Pass-Transistor Column Decoder 438
8.6 Read-Only Memory (ROM) 439
8.7 Flash Memory 442
8.7.1 Floating Gate Technology 442
8.7.2 NOR Circuit Implementations 445
8.7.3 NAND Implementations 445
Summary 447
Key Terms 448
References 449
Problems 449
CHAPTER 9
BIPOLAR LOGIC CIRCUITS 455
9.1 The Current Switch (Emitter-Coupled
Pair) 456
9.1.1 Mathematical Model for Static
Behavior of the Current Switch 456
9.1.2 Current Switch Analysis for
vI > VREF 458
9.1.3 Current Switch Analysis for
vI < VREF 459
9.2 The Emitter-Coupled Logic (ECL) Gate 459
9.2.1 ECL Gate with vI = VH 460
9.2.2 ECL Gate with vI = VL 461
9.2.3 Input Current of the ECL Gate 461
9.2.4 ECL Summary 461
9.3 Noise Margin Analysis for the ECL Gate 462
9.3.1 VI L , VO H , VI H , and VO L 462
9.3.2 Noise Margins 463
9.4 Current Source Implementation 464
9.5 The ECL OR-NOR Gate 466
9.6 The Emitter Follower 468
9.6.1 Emitter Follower with a Load
Resistor 469
9.7 “Emitter Dotting” or “Wired-OR” Logic 471
9.7.1 Parallel Connection of
Emitter-Follower Outputs 472
9.7.2 The Wired-OR Logic Function 472
9.8 ECL Power-Delay Characteristics 472
9.8.1 Power Dissipation 472
9.8.2 Gate Delay 474
9.8.3 Power-Delay Product 475
9.9 Positive ECL (PECL) 476
9.10 Current Mode Logic 476
9.10.1 CML Logic Gates 477
9.10.2 CML Logic Levels 478
9.10.3 VE E Supply Voltage 478
9.10.4 Higher-Level CML 479
9.10.5 CML Power Reduction 480
9.10.6 Source-Coupled Fet Logic (SCFL) 480
9.11 The Saturating Bipolar Inverter 483
9.11.1 Static Inverter
Characteristics 483
9.11.2 Saturation Voltage of the Bipolar
Transistor 484
9.11.3 Load-Line Visualization 486
9.11.4 Switching Characteristics of the
Saturated BJT 487
9.12 A Transistor-Transistor Logic (TTL) 490
9.12.1 TTL Inverter Analysis for vI = VL 490
9.12.2 Analysis for vI = VH 492
9.12.3 Power Consumption 493
9.12.4 TTL Propagation Delay and
Power-Delay Product 493
xii Contents
9.12.5 TTL Voltage Transfer
Characteristic and Noise
Margins 494
9.12.6 Fanout Limitations of Standard
TTL 494
9.13 Logic Functions in TTL 494
9.13.1 Multi-Emitter Input
Transistors 495
9.13.2 TTL NAND Gates 495
9.13.3 Input Clamping Diodes 496
9.14 Schottky-Clamped TTL 497
9.15 Comparison of the Power-Delay Products
of ECL and TTL 498
9.16 BiCMOS Logic 498
9.16.1 BiCMOS Buffers 499
9.16.2 BiNMOS Inverters 501
9.16.3 BiCMOS Logic Gates 502
Summary 503
Key Terms 504
References 505
Additional Reading 505
Problems 505
PART THREE
ANALOG ELECTRONICS 515
CHAPTER 10
ANALOG SYSTEMS AND IDEAL OPERATIONAL
AMPLIFIERS 517
10.1 An Example of an Analog Electronic
System 518
10.2 Amplification 519
10.2.1 Voltage Gain 520
10.2.2 Current Gain 521
10.2.3 Power Gain 521
10.2.4 The Decibel Scale 522
10.3 Two-Port Models for Amplifiers 525
10.3.1 The g-Parameters 525
10.4 Mismatched Source and Load
Resistances 529
10.5 Introduction to Operational Amplifiers 532
10.5.1 The Differential Amplifier 532
10.5.2 Differential Amplifier Voltage
Transfer Characteristic 533
10.5.3 Voltage Gain 533
10.6 Distortion in Amplifiers 536
10.7 Differential Amplifier Model 537
10.8 Ideal Differential and Operational
Amplifiers 539
10.8.1 Assumptions for Ideal Operational
Amplifier Analysis 539
10.9 Analysis of Circuits Containing Ideal
Operational Amplifiers 540
10.9.1 The Inverting Amplifier 541
10.9.2 The Transresistance Amplifier—a
Current-to-Voltage Converter 544
10.9.3 The Noninverting Amplifier 546
10.9.4 The Unity-Gain Buffer, or Voltage
Follower 548
10.9.5 The Summing Amplifier 551
10.9.6 The Difference Amplifier 553
10.10 Frequency Dependent Feedback 555
10.10.1 Bode Plots 556
10.10.2 The Low-Pass Amplifier 556
10.10.3 The High-Pass Amplifier 559
10.10.4 Band-Pass Amplifiers 562
10.10.5 An Active Low-Pass Filter 565
10.10.6 An Active High-Pass Filter 569
10.10.7 The Integrator 570
10.10.8 The Differentiator 573
Summary 574
Key Terms 575
References 576
Additional Reading 576
Problems 576
CHAPTER 11
NONIDEAL OPERATIONAL AMPLIFIERS AND
FEEDBACK AMPLIFIER STABILITY 587
11.1 Classic Feedback Systems 588
11.1.1 Closed-Loop Gain Analysis 589
11.1.2 Gain Error 589
11.2 Analysis of Circuits Containing Nonideal
Operational Amplifiers 590
11.2.1 Finite Open-Loop Gain 590
11.2.2 Nonzero Output Resistance 593
11.2.3 Finite Input Resistance 597
11.2.4 Summary of Nonideal Inverting
and Noninverting Amplifiers 601
11.3 Series and Shunt Feedback Circuits 602
11.3.1 Feedback Amplifier
Categories 602
11.3.2 Voltage Amplifiers—Series-Shunt
Feedback 603
11.3.3 Transimpedance
Amplifiers—Shunt-Shunt
Feedback 603
11.3.4 Current Amplifiers—Shunt-Series
Feedback 603
11.3.5 Transconductance
Amplifiers—Series-Series
Feedback 603
11.4 Unified Approach to Feedback Amplifier
Gain Calculation 603
11.4.1 Closed-Loop Gain Analysis 604
11.4.2 Resistance Calculations Using
Blackman’s Theorem 604
Contents xiii
11.5 Series-Shunt Feedback—Voltage
Amplifiers 604
11.5.1 Closed-Loop Gain Calculation 605
11.5.2 Input Resistance Calculations 605
11.5.3 Output Resistance Calculations 606
11.5.4 Series-Shunt Feedback Amplifier
Summary 607
11.6 Shunt-Shunt Feedback—Transresistance
Amplifiers 611
11.6.1 Closed-Loop Gain Calculation 611
11.6.2 Input Resistance Calculations 612
11.6.3 Output Resistance Calculations 612
11.6.4 Shunt-Shunt Feedback Amplifier
Summary 613
11.7 Series-Series Feedback—
Transconductance Amplifiers 616
11.7.1 Closed-Loop Gain Calculation 617
11.7.2 Input Resistance Calculation 617
11.7.3 Output Resistance Calculation 618
11.7.4 Series-Series Feedback Amplifier
Summary 618
11.8 Shunt-Series Feedback—Current
Amplifiers 620
11.8.1 Closed-Loop Gain Calculation 621
11.8.2 Input Resistance Calculation 621
11.8.3 Output Resistance Calculation 622
11.8.4 Series-Series Feedback Amplifier
Summary 622
11.9 Finding the Loop Gain Using Successive
Voltage and Current Injection 625
11.9.1 Simplifications 628
11.10 Distortion Reduction through the Use of
Feedback 628
11.11 dc Error Sources and Output Range
Limitations 629
11.11.1 Input-Offset Voltage 629
11.11.2 Offset-Voltage Adjustment 631
11.11.3 Input-Bias and Offset
Currents 632
11.11.4 Output Voltage and Current
Limits 634
11.12 Common-Mode Rejection and Input
Resistance 637
11.12.1 Finite Common-Mode Rejection
Ratio 637
11.12.2 Why Is CMRR Important? 638
11.12.3 Voltage-Follower Gain Error due to
CMRR 641
11.12.4 Common-Mode Input
Resistance 644
11.12.5 An Alternate Interpretation of
CMRR 645
11.12.6 Power Supply Rejection Ratio 645
11.13 Frequency Response and Bandwidth of
Operational Amplifiers 647
11.13.1 Frequency Response of the
Noninverting Amplifier 649
11.13.2 Inverting Amplifier Frequency
Response 652
11.13.3 Using Feedback to Control
Frequency Response 654
11.13.4 Large-Signal Limitations—Slew
Rate and Full-Power
Bandwidth 656
11.13.5 Macro Model for Operational
Amplifier Frequency
Response 657
11.13.6 Complete Op Amp Macro Models
in SPICE 658
11.13.7 Examples of Commercial
General-Purpose Operational
Amplifiers 658
11.14 Stability of Feedback Amplifiers 659
11.14.1 The Nyquist Plot 659
11.14.2 First-Order Systems 660
11.14.3 Second-Order Systems and Phase
Margin 661
11.14.4 Step Response and Phase
Margin 662
11.14.5 Third-Order Systems and Gain
Margin 665
11.14.6 Determining Stability from the
Bode Plot 666
Summary 670
Key Terms 672
References 672
Problems 673
CHAPTER 12
OPERATIONAL AMPLIFIER APPLICATIONS 685
12.1 Cascaded Amplifiers 686
12.1.1 Two-Port Representations 686
12.1.2 Amplifier Terminology Review 688
12.1.3 Frequency Response of Cascaded
Amplifiers 691
12.2 The Instrumentation Amplifier 699
12.3 Active Filters 702
12.3.1 Low-Pass Filter 702
12.3.2 A High-Pass Filter with Gain 706
12.3.3 Band-Pass Filter 708
12.3.4 Sensitivity 710
12.3.5 Magnitude and Frequency
Scaling 711
12.4 Switched-Capacitor Circuits 712
12.4.1 A Switched-Capacitor
Integrator 712
xiv Contents
12.4.2 Noninverting SC Integrator 714
12.4.3 Switched-Capacitor Filters 716
12.5 Digital-to-Analog Conversion 719
12.5.1 D/A Converter Fundamentals 719
12.5.2 D/A Converter Errors 720
12.5.3 Digital-to-Analog Converter
Circuits 722
12.6 Analog-to-Digital Conversion 726
12.6.1 A/D Converter Fundamentals 727
12.6.2 Analog-to-Digital Converter Errors 728
12.6.3 Basic A/D Conversion
Techniques 729
12.7 Oscillators 740
12.7.1 The Barkhausen Criteria for
Oscillation 740
12.7.2 Oscillators Employing
Frequency-Selective RC
Networks 741
12.8 Nonlinear Circuit Applications 745
12.8.1 A Precision Half-Wave
Rectifier 745
12.8.2 Nonsaturating Precision-Rectifier
Circuit 746
12.9 Circuits Using Positive Feedback 748
12.9.1 The Comparator and Schmitt
Trigger 748
12.9.2 The Astable Multivibrator 750
12.9.3 The Monostable Multivibrator or
One Shot 751
Summary 755
Key Terms 757
Additional Reading 758
Problems 758
CHAPTER 13
SMALL-SIGNAL MODELING AND LINEAR
AMPLIFICATION 770
13.1 The Transistor as an Amplifier 771
13.1.1 The BJT Amplifier 772
13.1.2 The MOSFET Amplifier 773
13.2 Coupling and Bypass Capacitors 774
13.3 Circuit Analysis Using dc and ac
Equivalent Circuits 776
13.3.1 Menu for dc and ac Analysis 776
13.4 Introduction to Small-Signal Modeling 780
13.4.1 Graphical Interpretation of the
Small-Signal Behavior of the
Diode 780
13.4.2 Small-Signal Modeling of the
Diode 781
13.5 Small-Signal Models for Bipolar Junction
Transistors 783
13.5.1 The Hybrid-Pi Model 785
13.5.2 Graphical Interpretation of the
Transconductance 786
13.5.3 Small-Signal Current Gain 786
13.5.4 The Intrinsic Voltage Gain of the
BJT 787
13.5.5 Equivalent Forms of the
Small-Signal Model 788
13.5.6 Simplified Hybrid Pi Model 789
13.5.7 Definition of a Small Signal for
the Bipolar Transistor 789
13.5.8 Small-Signal Model for the pnp
Transistor 791
13.5.9 ac Analysis versus Transient
Analysis in SPICE 792
13.6 The Common-Emitter (C-E) Amplifier 792
13.6.1 Terminal Voltage Gain 792
13.6.2 Input Resistance 794
13.6.3 Signal Source Voltage Gain 794
13.7 Important Limits and Model
Simplifications 794
13.7.1 A Design Guide for the
Common-Emitter Amplifier 795
13.7.2 Upper Bound on the
Common-Emitter Gain 796
13.7.3 Small-Signal Limit for the
Common-Emitter Amplifier 796
13.8 Small-Signal Models for Field-Effect
Transistors 799
13.8.1 Small-Signal Model for the
MOSFET 799
13.8.2 Intrinsic Voltage Gain of the
MOSFET 801
13.8.3 Definition of Small-Signal
Operation for the MOSFET 802
13.8.4 Body Effect in the Four-Terminal
MOSFET 803
13.8.5 Small-Signal Model for the PMOS
Transistor 804
13.8.6 Small-Signal Model for the
Junction Field-Effect Transistor 805
13.9 Summary and Comparison of the SmallSignal Models of the BJT and FET 806
13.10 The Common-Source Amplifier 809
13.10.1 Common-Source Terminal Voltage
Gain 810
13.10.2 Signal Source Voltage Gain for the
Common-Source Amplifier 810
13.10.3 A Design Guide for the
Common-Source Amplifier 810
13.10.4 Small-Signal Limit for the
Common-Source Amplifier 811
13.10.5 Input Resistances of the
Common-Emitter and
Common-Source Amplifiers 813
Contents xv
13.10.6 Common-Emitter and
Common-Source Output
Resistances 816
13.10.7 Comparison of the Three
Amplifier Examples 822
13.11 Common-Emitter and Common-Source
Amplifier Summary 822
13.11.1 Guidelines for Neglecting the
Transistor Output Resistance 823
13.12 Amplifier Power and Signal Range 823
13.12.1 Power Dissipation 823
13.12.2 Signal Range 824
Summary 827
Key Terms 828
Problems 829
CHAPTER 14
SINGLE-TRANSISTOR AMPLIFIERS 841
14.1 Amplifier Classification 842
14.1.1 Signal Injection and
Extraction—the BJT 842
14.1.2 Signal Injection and
Extraction—the FET 843
14.1.3 Common-Emitter (C-E) and
Common-Source (C-S)
Amplifiers 844
14.1.4 Common-Collector (C-C) and
Common-Drain (C-D)
Topologies 845
14.1.5 Common-Base (C-B) and
Common-Gate (C-G)
Amplifiers 847
14.1.6 Small-Signal Model Review 848
14.2 Inverting Amplifiers—Common-Emitter
and Common-Source Circuits 848
14.2.1 The Common-Emitter (C-E)
Amplifier 848
14.2.2 Common-Emitter Example
Comparison 861
14.2.3 The Common-Source
Amplifier 861
14.2.4 Small-Signal Limit for the
Common-Source Amplifier 864
14.2.5 Common-Emitter and
Common-Source Amplifier
Characteristics 868
14.2.6 C-E/C-S Amplifier Summary 869
14.2.7 Equivalent Transistor
Representation of the Generalized
C-E/C-S Transistor 869
14.3 Follower Circuits—Common-Collector and
Common-Drain Amplifiers 870
14.3.1 Terminal Voltage Gain 870
14.3.2 Input Resistance 871
14.3.3 Signal Source Voltage Gain 872
14.3.4 Follower Signal Range 872
14.3.5 Follower Output Resistance 873
14.3.6 Current Gain 874
14.3.7 C-C/C-D Amplifier Summary 874
14.4 Noninverting Amplifiers—Common-Base
and Common-Gate Circuits 878
14.4.1 Terminal Voltage Gain and Input
Resistance 879
14.4.2 Signal Source Voltage Gain 880
14.4.3 Input Signal Range 881
14.4.4 Resistance at the Collector and
Drain Terminals 881
14.4.5 Current Gain 882
14.4.6 Overall Input and Output
Resistances for the Noninverting
Amplifiers 883
14.4.7 C-B/C-G Amplifier Summary 886
14.5 Amplifier Prototype Review and
Comparison 887
14.5.1 The BJT Amplifiers 887
14.5.2 The FET Amplifiers 889
14.6 Common-Source Amplifiers Using MOS
Inverters 891
14.6.1 Voltage Gain Estimate 892
14.6.2 Detailed Analysis 893
14.6.3 Alternative Loads 894
14.6.4 Input and Output
Resistances 895
14.7 Coupling and Bypass Capacitor
Design 898
14.7.1 Common-Emitter and
Common-Source Amplifiers 898
14.7.2 Common-Collector and
Common-Drain Amplifiers 903
14.7.3 Common-Base and Common-Gate
Amplifiers 905
14.7.4 Setting Lower Cutoff Frequency fL 908
14.8 Amplifier Design Examples 909
14.8.1 Monte Carlo Evaluation of the
Common-Base Amplifier
Design 918
14.9 Multistage ac-Coupled Amplifiers 923
14.9.1 A Three-Stage ac-Coupled
Amplifier 923
14.9.2 Voltage Gain 925
14.9.3 Input Resistance 927
14.9.4 Signal Source Voltage Gain 927
14.9.5 Output Resistance 927
14.9.6 Current and Power Gain 928
14.9.7 Input Signal Range 929
14.9.8 Estimating the Lower Cutoff
Frequency of the Multistage
Amplifier 932
xvi Contents
Summary 934
Key Terms 935
Additional Reading 936
Problems 936
CHAPTER 15
DIFFERENTIAL AMPLIFIERS AND OPERATIONAL
AMPLIFIER DESIGN 952
15.1 Differential Amplifiers 953
15.1.1 Bipolar and MOS Differential
Amplifiers 953
15.1.2 dc Analysis of the Bipolar
Differential Amplifier 954
15.1.3 Transfer Characteristic for the
Bipolar Differential Amplifier 956
15.1.4 ac Analysis of the Bipolar
Differential Amplifier 957
15.1.5 Differential-Mode Gain and Input
and Output Resistances 958
15.1.6 Common-Mode Gain and Input
Resistance 960
15.1.7 Common-Mode Rejection Ratio
(CMRR) 962
15.1.8 Analysis Using Differential- and
Common-Mode Half-Circuits 963
15.1.9 Biasing with Electronic Current
Sources 966
15.1.10 Modeling the Electronic Current
Source in SPICE 967
15.1.11 dc Analysis of the MOSFET
Differential Amplifier 967
15.1.12 Differential-Mode Input
Signals 970
15.1.13 Small-Signal Transfer
Characteristic for the MOS
Differential Amplifier 971
15.1.14 Common-Mode Input Signals 971
15.1.15 Model for Differential Pairs 972
15.2 Evolution to Basic Operational
Amplifiers 976
15.2.1 A Two-Stage Prototype for an
Operational Amplifier 977
15.2.2 Improving the Op Amp Voltage
Gain 982
15.2.3 Darlington Pairs 983
15.2.4 Output Resistance Reduction 984
15.2.5 A CMOS Operational Amplifier
Prototype 988
15.2.6 BiCMOS Amplifiers 990
15.2.7 All Transistor
Implementations 990
15.3 Output Stages 992
15.3.1 The Source Follower—a Class-A
Output Stage 992
15.3.2 Efficiency of Class-A
Amplifiers 993
15.3.3 Class-B Push-Pull Output
Stage 994
15.3.4 Class-AB Amplifiers 996
15.3.5 Class-AB Output Stages for
Operational Amplifiers 997
15.3.6 Short-Circuit Protection 997
15.3.7 Transformer Coupling 999
15.4 Electronic Current Sources 1002
15.4.1 Single-Transistor Current
Sources 1003
15.4.2 Figure of Merit for Current
Sources 1003
15.4.3 Higher Output Resistance
Sources 1004
15.4.4 Current Source Design
Examples 1005
Summary 1013
Key Terms 1014
References 1015
Additional Reading 1015
Problems 1015
CHAPTER 16
ANALOG INTEGRATED CIRCUIT DESIGN
TECHNIQUES 1031
16.1 Circuit Element Matching 1032
16.2 Current Mirrors 1033
16.2.1 dc Analysis of the MOS Transistor
Current Mirror 1034
16.2.2 Changing the MOS Mirror
Ratio 1036
16.2.3 dc Analysis of the Bipolar
Transistor Current Mirror 1037
16.2.4 Altering the BJT Current Mirror
Ratio 1039
16.2.5 Multiple Current Sources 1040
16.2.6 Buffered Current Mirror 1041
16.2.7 Output Resistance of the Current
Mirrors 1042
16.2.8 Two-Port Model for the Current
Mirror 1043
16.2.9 The Widlar Current Source 1045
16.2.10 The MOS Version of the Widlar
Source 1048
16.3 High-Output-Resistance Current Mirrors 1048
16.3.1 The Wilson Current Sources 1049
16.3.2 Output Resistance of the Wilson
Source 1050
16.3.3 Cascode Current Sources 1051
16.3.4 Output Resistance of the Cascode
Sources 1052
Contents xvii
16.3.5 Regulated Cascode Current
Source 1053
16.3.6 Current Mirror Summary 1054
16.4 Reference Current Generation 1057
16.5 Supply-Independent Biasing 1058
16.5.1 A VBE -Based Reference 1058
16.5.2 The Widlar Source 1058
16.5.3 Power-Supply-Independent Bias
Cell 1059
16.5.4 A Supply-Independent MOS
Reference Cell 1060
16.6 The Bandgap Reference 1062
16.7 The Current Mirror as an Active Load 1066
16.7.1 CMOS Differential Amplifier with
Active Load 1066
16.7.2 Bipolar Differential Amplifier with
Active Load 1073
16.8 Active Loads in Operational
Amplifiers 1077
16.8.1 CMOS Op Amp Voltage Gain 1077
16.8.2 dc Design Considerations 1078
16.8.3 Bipolar Operational
Amplifiers 1080
16.8.4 Input Stage Breakdown 1081
16.9 The μA741 Operational Amplifier 1082
16.9.1 Overall Circuit Operation 1082
16.9.2 Bias Circuitry 1083
16.9.3 dc Analysis of the 741 Input
Stage 1084
16.9.4 ac Analysis of the 741 Input
Stage 1087
16.9.5 Voltage Gain of the Complete
Amplifier 1088
16.9.6 The 741 Output Stage 1092
16.9.7 Output Resistance 1094
16.9.8 Short-Circuit Protection 1094
16.9.9 Summary of the μA741
Operational Amplifier
Characteristics 1094
16.10 The Gilbert Analog Multiplier 1095
Summary 1097
Key Terms 1098
References 1099
Problems 1099
CHAPTER 17
AMPLIFIER FREQUENCY RESPONSE 1113
17.1 Amplifier Frequency Response 1114
17.1.1 Low-Frequency Response 1115
17.1.2 Estimating ωL in the Absence of a
Dominant Pole 1115
17.1.3 High-Frequency Response 1118
17.1.4 Estimating ωH in the Absence of
a Dominant Pole 1118
17.2 Direct Determination of the
Low-Frequency Poles and Zeros—the
Common-Source Amplifier 1119
17.3 Estimation of ωL Using the Short-Circuit
Time-Constant Method 1124
17.3.1 Estimate of ωL for the
Common-Emitter Amplifier 1125
17.3.2 Estimate of ωL for the
Common-Source Amplifier 1129
17.3.3 Estimate of ωL for the
Common-Base Amplifier 1130
17.3.4 Estimate of ωL for the
Common-Gate Amplifier 1131
17.3.5 Estimate of ωL for the
Common-Collector Amplifier 1132
17.3.6 Estimate of ωL for the
Common-Drain Amplifier 1132
17.4 Transistor Models at High Frequencies 1133
17.4.1 Frequency-Dependent Hybrid-Pi
Model for the Bipolar
Transistor 1133
17.4.2 Modeling Cπ and Cμ in SPICE 1134
17.4.3 Unity-Gain Frequency fT 1134
17.4.4 High-Frequency Model for the
FET 1137
17.4.5 Modeling CG S and CG D in
SPICE 1138
17.4.6 Channel Length Dependence
of fT 1138
17.4.7 Limitations of the
High-Frequency Models 1140
17.5 Base and Gate Resistances in the
Small-Signal Models 1140
17.5.1 Effect of Base and Gate
Resistances on Midband
Amplifiers 1141
17.6 High-Frequency Common-Emitter and
Common-Source Amplifier Analysis 1142
17.6.1 The Miller Effect 1144
17.6.2 Common-Emitter and
Common-Source Amplifier
High-Frequency Response 1146
17.6.3 Direct Analysis of the
Common-Emitter Transfer
Characteristic 1148
17.6.4 Poles of the Common-Emitter
Amplifier 1149
17.6.5 Dominant Pole for the
Common-Source Amplifier 1152
17.6.6 Estimation of ωH Using the
Open-Circuit Time-Constant
Method 1154
17.6.7 Common-Source Amplifier with
Source Degeneration
Resistance 1155
xviii Contents
17.6.8 Poles of the Common-Emitter
with Emitter Degeneration
Resistance 1157
17.7 Common-Base and Common-Gate
Amplifier High-Frequency Response 1160
17.8 Common-Collector and Common-Drain
Amplifier High-Frequency Response 1162
17.8.1 Frequency Response of the
Complementary Emitter
Follower 1165
17.9 Single-Stage Amplifier High-Frequency
Response Summary 1166
17.9.1 Amplifier Gain-Bandwidth
Limitations 1167
17.10 Frequency Response of Multistage
Amplifiers 1168
17.10.1 Differential Amplifier 1168
17.10.2 The Common-Collector/CommonBase Cascade 1170
17.10.3 High-Frequency Response of the
Cascode Amplifier 1171
17.10.4 Cutoff Frequency for the Current
Mirror 1172
17.10.5 Three-Stage Amplifier
Example 1173
17.11 Introduction to Radio Frequency
Circuits 1181
17.11.1 Radio Frequency Amplifiers 1182
17.11.2 The Shunt-Peaked Amplifier 1182
17.11.3 Single-Tuned Amplifier 1184
17.11.4 Use of a Tapped Inductor—the
Auto Transformer 1186
17.11.5 Multiple Tuned Circuits—
Synchronous and Stagger
Tuning 1188
17.11.6 Common-Source Amplifier with
Inductive Degeneration 1189
17.12 Mixers and Balanced Modulators 1193
17.12.1 Introduction to Mixer
Operation 1193
17.12.2 A Single-Balanced Mixer 1194
17.12.3 The Differential Pair as a
Single-Balanced Mixer 1195
17.12.4 A Double-Balanced Mixer 1197
17.12.5 The Jones Mixer—a
Double-Balanced
Mixer/Modulator 1199
Summary 1203
Key Terms 1204
References 1204
Problems 1205
CHAPTER 18
TRANSISTOR FEEDBACK AMPLIFIERS AND
OSCILLATORS 1217
18.1 Basic Feedback System Review 1218
18.1.1 Closed-Loop Gain 1218
18.1.2 Closed-Loop Impedances 1219
18.1.3 Feedback Effects 1219
18.2 Feedback Amplifier Analysis at
Midband 1221
18.2.1 Closed-Loop Gain 1221
18.2.2 Input Resistance 1222
18.2.3 Output Resistance 1222
18.2.4 Offset Voltage Calculation 1223
18.3 Feedback Amplifier Circuit Examples 1224
18.3.1 Series-Shunt Feedback—Voltage
Amplifiers 1224
18.3.2 Differential Input Series-Shunt
Voltage Amplifier 1229
18.3.3 Shunt-Shunt
Feedback—Transresistance
Amplifiers 1232
18.3.4 Series-Series
Feedback—Transconductance
Amplifiers 1238
18.3.5 Shunt-Series Feedback—Current
Amplifiers 1241
18.4 Review of Feedback Amplifier
Stability 1244
18.4.1 Closed-Loop Response of the
Uncompensated Amplifier 1245
18.4.2 Phase Margin 1246
18.4.3 Higher Order Effects 1250
18.4.4 Response of the Compensated
Amplifier 1251
18.4.5 Small-Signal Limitations 1253
18.5 Single-Pole Operational Amplifier
Compensation 1253
18.5.1 Three-Stage Op-Amp
Analysis 1254
18.5.2 Transmission Zeros in FET Op
Amps 1256
18.5.3 Bipolar Amplifier
Compensation 1257
18.5.4 Slew Rate of the Operational
Amplifier 1258
18.5.5 Relationships between Slew Rate
and Gain-Bandwidth
Product 1259
18.6 High-Frequency Oscillators 1268
18.6.1 The Colpitts Oscillator 1269
Contents xix
18.6.2 The Hartley Oscillator 1270
18.6.3 Amplitude Stabilization in LC
Oscillators 1271
18.6.4 Negative Resistance in
Oscillators 1271
18.6.5 Negative Gm Oscillator 1272
18.6.6 Crystal Oscillators 1274
Summary 1278
Key Terms 1280
References 1280
Problems 1280
APPENDICES
A Standard Discrete Component Values 1291
B Solid-State Device Models and SPICE
Simulation Parameters 1294
C Two-Port Review 1299
Index 1303
PREFACE
Through study of this text, the reader will develop a comprehensive understanding of the basic techniques of modern electronic circuit design, analog and digital, discrete
and integrated. Even though most readers may not ultimately be engaged in the design of integrated circuits (ICs)
themselves, a thorough understanding of the internal circuit
structure of ICs is prerequisite to avoiding many pitfalls that
prevent the effective and reliable application of integrated
circuits in system design.
Digital electronics has evolved to be an extremely important area of circuit design, but it is included almost as
an afterthought in many introductory electronics texts. We
present a more balanced coverage of analog and digital circuits. The writing integrates the authors’ extensive industrial backgrounds in precision analog and digital design with
their many years of experience in the classroom. A broad
spectrum of topics is included, and material can easily be
selected to satisfy either a two-semester or three-quarter
sequence in electronics.
IN THIS EDITION
This edition continues to update the material to achieve
improved readability and accessibility to the student. In
addition to general material updates, a number of specific
changes have been included.
In Part I, the concept of velocity saturation from
Chapter 2 is reinforced with the addition of the Unified
MOS model of Rabaey and Chandrakasan in the Field
Effect Transistors chapter, and the impact of velocity limitations on digital and analog circuits is now a recurrent
topic throughout Parts II and III with discussion, examples,
and new problems.
Part II has had flip-flops and latches included with other
basic CMOS logic circuits in Chapter 7. Flash memory has
become a pervasive technology. A significant addition to
Chapter 8 is an introduction to flash memory technology
and circuitry with accompanying problems. In Chapter 9,
the material on T 2L has been reduced somewhat since
its importance is waning, whereas a short discussion of
Positive ECL (PECL) has been added. The material that
was removed is still accessible on the web.
As noted above, Part III discusses biasing and distortion
in the velocity saturated regime along with new problems. A
section on Darlington pairs is a new addition to 

标签: 微电子

实例下载地址

微电子电路设计(MICROELECTRONIC CIRCUIT DESIGN).pdf

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警