实例介绍
【实例简介】基于sift和SVM算法实现的手势识别程序,用MATLAB GUI编写的,附有手势库,可拷贝至任何磁盘运行不必担心路径问题,但可能要求版本高一点的MATLAB软件
Hand gesture Recognition based SIFT and SVM_matlab
【实例截图】
【核心代码】
%A - 1329 %B - 487 %C - 572 %Five - 654 %Point - 1395 %V - 435 %% imgDir = './shp_marcel_train/Marcel-Train/'; outDir = './surfTrain'; mkdir(outDir); % trainNumA = 1329; % trainNumB = 487; % trainNumC = 572; % trainNumFive = 654; % trainNumPoint = 1395; % trainNumV = 435; trainNumA = 10; trainNumB = 10; trainNumC = 10; % trainNumFive = 200; % trainNumPoint = 600; % trainNumV = 200; imgSize = 80; patchSize = 16; gridSpacing = patchSize/2; gridRowNum = imgSize/gridSpacing - 1; row_matOne = gridRowNum^2; %% A matDSift = []; matOne = zeros(row_matOne, 128); trainLabel = 'A'; for i = 1:trainNumA % num = [num2str(floor(i/1000)), num2str(floor(mod(i,1000)/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))]; num = [num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))]; imgName = [trainLabel, '-uniform', num, '.ppm']; imgPath = [imgDir, trainLabel, '/', imgName]; img = imread(imgPath); img = imresize(img, [imgSize, imgSize]); descriptor = dense_sift(img, patchSize, gridSpacing); for j = 1:gridRowNum for k = 1:gridRowNum matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :); end end matDSift = cat(1, matDSift, matOne); end matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt']; dlmwrite(matOutFileName, matDSift); %% B matDSift = []; matOne = zeros(row_matOne, 128); trainLabel = 'B'; for i = 1:trainNumB % num = [num2str(floor(i/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))]; num = [num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))]; imgName = [trainLabel, '-uniform', num, '.ppm']; imgPath = [imgDir, trainLabel, '/', imgName]; img = imread(imgPath); img = imresize(img, [imgSize, imgSize]); descriptor = dense_sift(img, patchSize, gridSpacing); for j = 1:gridRowNum for k = 1:gridRowNum matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :); end end matDSift = cat(1, matDSift, matOne); end matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt']; dlmwrite(matOutFileName, matDSift); %% C matDSift = []; matOne = zeros(row_matOne, 128); trainLabel = 'C'; for i = 1:trainNumC % num = [num2str(floor(i/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))]; num = [num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))]; imgName = [trainLabel, '-uniform', num, '.ppm']; imgPath = [imgDir, trainLabel, '/', imgName]; img = imread(imgPath); img = imresize(img, [imgSize, imgSize]); descriptor = dense_sift(img, patchSize, gridSpacing); for j = 1:gridRowNum for k = 1:gridRowNum matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :); end end matDSift = cat(1, matDSift, matOne); end matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt']; dlmwrite(matOutFileName, matDSift); % % matDSift = []; % matOne = zeros(row_matOne, 128); % trainLabel = 'Five'; % for i = 1:trainNumFive % num = [num2str(floor(i/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))]; % imgName = [trainLabel, '-train', num, '.ppm']; % imgPath = [imgDir, trainLabel, '/', imgName]; % img = imread(imgPath); % img = imresize(img, [imgSize, imgSize]); % descriptor = dense_sift(img, patchSize, gridSpacing); % for j = 1:gridRowNum % for k = 1:gridRowNum % matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :); % end % end % matDSift = cat(1, matDSift, matOne); % end % matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt']; % dlmwrite(matOutFileName, matDSift); % % matDSift = []; % matOne = zeros(row_matOne, 128); % trainLabel = 'Point'; % for i = 1:trainNumPoint % num = [num2str(floor(i/1000)), num2str(floor(mod(i,1000)/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))]; % imgName = [trainLabel, '-train', num, '.ppm']; % imgPath = [imgDir, trainLabel, '/', imgName]; % img = imread(imgPath); % img = imresize(img, [imgSize, imgSize]); % descriptor = dense_sift(img, patchSize, gridSpacing); % for j = 1:gridRowNum % for k = 1:gridRowNum % matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :); % end % end % matDSift = cat(1, matDSift, matOne); % end % matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt']; % dlmwrite(matOutFileName, matDSift); % % matDSift = []; % matOne = zeros(row_matOne, 128); % trainLabel = 'V'; % for i = 1:trainNumV % num = [num2str(floor(i/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))]; % imgName = [trainLabel, '-train', num, '.ppm']; % imgPath = [imgDir, trainLabel, '/', imgName]; % img = imread(imgPath); % img = imresize(img, [imgSize, imgSize]); % descriptor = dense_sift(img, patchSize, gridSpacing); % for j = 1:gridRowNum % for k = 1:gridRowNum % matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :); % end % end % matDSift = cat(1, matDSift, matOne); % end % matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt']; % dlmwrite(matOutFileName, matDSift);
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论