实例介绍
【实例简介】基于sift和SVM算法实现的手势识别程序,用MATLAB GUI编写的,附有手势库,可拷贝至任何磁盘运行不必担心路径问题,但可能要求版本高一点的MATLAB软件
Hand gesture Recognition based SIFT and SVM_matlab
【实例截图】
【核心代码】
%A - 1329
%B - 487
%C - 572
%Five - 654
%Point - 1395
%V - 435
%%
imgDir = './shp_marcel_train/Marcel-Train/';
outDir = './surfTrain';
mkdir(outDir);
% trainNumA = 1329;
% trainNumB = 487;
% trainNumC = 572;
% trainNumFive = 654;
% trainNumPoint = 1395;
% trainNumV = 435;
trainNumA = 10;
trainNumB = 10;
trainNumC = 10;
% trainNumFive = 200;
% trainNumPoint = 600;
% trainNumV = 200;
imgSize = 80;
patchSize = 16;
gridSpacing = patchSize/2;
gridRowNum = imgSize/gridSpacing - 1;
row_matOne = gridRowNum^2;
%% A
matDSift = [];
matOne = zeros(row_matOne, 128);
trainLabel = 'A';
for i = 1:trainNumA
% num = [num2str(floor(i/1000)), num2str(floor(mod(i,1000)/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))];
num = [num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))];
imgName = [trainLabel, '-uniform', num, '.ppm'];
imgPath = [imgDir, trainLabel, '/', imgName];
img = imread(imgPath);
img = imresize(img, [imgSize, imgSize]);
descriptor = dense_sift(img, patchSize, gridSpacing);
for j = 1:gridRowNum
for k = 1:gridRowNum
matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :);
end
end
matDSift = cat(1, matDSift, matOne);
end
matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt'];
dlmwrite(matOutFileName, matDSift);
%% B
matDSift = [];
matOne = zeros(row_matOne, 128);
trainLabel = 'B';
for i = 1:trainNumB
% num = [num2str(floor(i/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))];
num = [num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))];
imgName = [trainLabel, '-uniform', num, '.ppm'];
imgPath = [imgDir, trainLabel, '/', imgName];
img = imread(imgPath);
img = imresize(img, [imgSize, imgSize]);
descriptor = dense_sift(img, patchSize, gridSpacing);
for j = 1:gridRowNum
for k = 1:gridRowNum
matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :);
end
end
matDSift = cat(1, matDSift, matOne);
end
matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt'];
dlmwrite(matOutFileName, matDSift);
%% C
matDSift = [];
matOne = zeros(row_matOne, 128);
trainLabel = 'C';
for i = 1:trainNumC
% num = [num2str(floor(i/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))];
num = [num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))];
imgName = [trainLabel, '-uniform', num, '.ppm'];
imgPath = [imgDir, trainLabel, '/', imgName];
img = imread(imgPath);
img = imresize(img, [imgSize, imgSize]);
descriptor = dense_sift(img, patchSize, gridSpacing);
for j = 1:gridRowNum
for k = 1:gridRowNum
matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :);
end
end
matDSift = cat(1, matDSift, matOne);
end
matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt'];
dlmwrite(matOutFileName, matDSift);
%
% matDSift = [];
% matOne = zeros(row_matOne, 128);
% trainLabel = 'Five';
% for i = 1:trainNumFive
% num = [num2str(floor(i/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))];
% imgName = [trainLabel, '-train', num, '.ppm'];
% imgPath = [imgDir, trainLabel, '/', imgName];
% img = imread(imgPath);
% img = imresize(img, [imgSize, imgSize]);
% descriptor = dense_sift(img, patchSize, gridSpacing);
% for j = 1:gridRowNum
% for k = 1:gridRowNum
% matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :);
% end
% end
% matDSift = cat(1, matDSift, matOne);
% end
% matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt'];
% dlmwrite(matOutFileName, matDSift);
%
% matDSift = [];
% matOne = zeros(row_matOne, 128);
% trainLabel = 'Point';
% for i = 1:trainNumPoint
% num = [num2str(floor(i/1000)), num2str(floor(mod(i,1000)/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))];
% imgName = [trainLabel, '-train', num, '.ppm'];
% imgPath = [imgDir, trainLabel, '/', imgName];
% img = imread(imgPath);
% img = imresize(img, [imgSize, imgSize]);
% descriptor = dense_sift(img, patchSize, gridSpacing);
% for j = 1:gridRowNum
% for k = 1:gridRowNum
% matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :);
% end
% end
% matDSift = cat(1, matDSift, matOne);
% end
% matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt'];
% dlmwrite(matOutFileName, matDSift);
%
% matDSift = [];
% matOne = zeros(row_matOne, 128);
% trainLabel = 'V';
% for i = 1:trainNumV
% num = [num2str(floor(i/100)), num2str(floor(mod(i,100)/10)), num2str(floor(mod(i, 10)))];
% imgName = [trainLabel, '-train', num, '.ppm'];
% imgPath = [imgDir, trainLabel, '/', imgName];
% img = imread(imgPath);
% img = imresize(img, [imgSize, imgSize]);
% descriptor = dense_sift(img, patchSize, gridSpacing);
% for j = 1:gridRowNum
% for k = 1:gridRowNum
% matOne((j-1)*gridRowNum k, :) = descriptor(j, k, :);
% end
% end
% matDSift = cat(1, matDSift, matOne);
% end
% matOutFileName = [outDir, '/', 'dsift', trainLabel, '.txt'];
% dlmwrite(matOutFileName, matDSift);
相关软件
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明


网友评论
我要评论