实例介绍
【实例截图】
【核心代码】
function [apen] = approx_entropy_my(n,r,a) %% Code for computing approximate entropy for a time series: Approximate % Entropy is a measure of complexity. It quantifies the unpredictability of % fluctuations in a time series % To run this function- type: approx_entropy('window length','similarity measure','data set') % i.e approx_entropy(5,0.5,a) % window length= length of the window, which should be considered in each iteration % similarity measure = measure of distance between the elements % data set = data vector % small values of apen (approx entropy) means data is predictable, whereas % higher values mean that data is unpredictable % concept boorowed from http://www.physionet.org/physiotools/ApEn/ % Author: Avinash Parnandi, parnandi@usc.edu, http://robotics.usc.edu/~parnandi/ data =a; for m=n:n 1; % run it twice, with window size differing by 1 set = 0; count = 0; counter = 0; window_correlation = zeros(1,(length(data)-m 1)); for i=1:(length(data))-m 1, current_window = data(i:i m-1); % current window stores the sequence to be compared with other sequences %% 计算两个之间的差超过多少的个数 for j=1:length(data)-m 1, sliding_window = data(j:j m-1); % get a window for comparision with the current_window % compare two windows, element by element % can also use some kind of norm measure; that will perform better for k=1:m, if((abs(current_window(k)-sliding_window(k))>r) && set == 0) set = 1; % i.e. the difference between the two sequence is greater than the given value 只要有两个的距离大于r就置为1 end end%k=1:m, if(set==0) count = count 1; % this measures how many sliding_windows are similar to the current_window end set = 0; % reseting 'set' end%j=1:length(data)-m 1, end结束后得到所有落在模板i的r内的个数 counter(i)=log(count/(length(data)-m 1)); % we need the number of similar windows for every cuurent_window count=0; i; end % for i=1:(length(data))-m 1, ends here counter; % this tells how many similar windows are present for each window of length m %total_similar_windows = sum(counter); %window_correlation = counter/(length(data)-m 1); correlation(m-n 1) = ((sum(counter))/(length(data)-m 1)); end % for m=n:n 1; % run it twice correlation(1); correlation(2); apen = correlation(1)-correlation(2); % apen = log(correlation(1)/correlation(2));
标签: 模糊
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论