实例介绍
【实例截图】
【核心代码】
Contents Preface xxvii 1 Introduction 1 1.1 Machine learning: what and why? 1 1.1.1 Types of machine learning 2 1.2 Supervised learning 3 1.2.1 Classification 3 1.2.2 Regression 8 1.3 Unsupervised learning 9 1.3.1 Discovering clusters 10 1.3.2 Discovering latent factors 11 1.3.3 Discovering graph structure 13 1.3.4 Matrix completion 14 1.4 Some basic concepts in machine learning 16 1.4.1 Parametric vs non-parametric models 16 1.4.2 A simple non-parametric classifier: K-nearest neighbors 16 1.4.3 The curse of dimensionality 18 1.4.4 Parametric models for classification and regression 19 1.4.5 Linear regression 19 1.4.6 Logistic regression 21 1.4.7 Overfitting 22 1.4.8 Model selection 22 1.4.9 No free lunch theorem 24 2 Probability 27 2.1 Introduction 27 2.2 A brief review of probability theory 28 2.2.1 Discrete random variables 28 2.2.2 Fundamental rules 28 2.2.3 Bayes rule 29 2.2.4 Independence and conditional independence 30 2.2.5 Continuous random variables 32 viii CONTENTS 2.2.6 Quantiles 33 2.2.7 Mean and variance 33 2.3 Some common discrete distributions 34 2.3.1 The binomial and Bernoulli distributions 34 2.3.2 The multinomial and multinoulli distributions 35 2.3.3 The Poisson distribution 37 2.3.4 The empirical distribution 37 2.4 Some common continuous distributions 38 2.4.1 Gaussian (normal) distribution 38 2.4.2 Degenerate pdf 39 2.4.3 The Laplace distribution 41 2.4.4 The gamma distribution 41 2.4.5 The beta distribution 42 2.4.6 Pareto distribution 43 2.5 Joint probability distributions 44 2.5.1 Covariance and correlation 44 2.5.2 The multivariate Gaussian 46 2.5.3 Multivariate Student t distribution 46 2.5.4 Dirichlet distribution 47 2.6 Transformations of random variables 49 2.6.1 Linear transformations 49 2.6.2 General transformations 50 2.6.3 Central limit theorem 51 2.7 Monte Carlo approximation 52 2.7.1 Example: change of variables, the MC way 53 2.7.2 Example: estimating π by Monte Carlo integration 54 2.7.3 Accuracy of Monte Carlo approximation 54 2.8 Information theory 56 2.8.1 Entropy 56 2.8.2 KL divergence 57 2.8.3 Mutual information 59 3 Generative models for discrete data 65 3.1 Introduction 65 3.2 Bayesian concept learning 65 3.2.1 Likelihood 67 3.2.2 Prior 67 3.2.3 Posterior 68 3.2.4 Posterior predictive distribution 71 3.2.5 A more complex prior 72 3.3 The beta-binomial model 72 3.3.1 Likelihood 73 3.3.2 Prior 74 3.3.3 Posterior 75 3.3.4 Posterior predictive distribution 77 CONTENTS ix 3.4 The Dirichlet-multinomial model 78 3.4.1 Likelihood 79 3.4.2 Prior 79 3.4.3 Posterior 79 3.4.4 Posterior predictive 81 3.5 Naive Bayes classifiers 82 3.5.1 Model fitting 83 3.5.2 Using the model for prediction 85 3.5.3 The log-sum-exp trick 86 3.5.4 Feature selection using mutual information 86 3.5.5 Classifying documents using bag of words 87 4 Gaussian models 97 4.1 Introduction 97 4.1.1 Notation 97 4.1.2 Basics 97 4.1.3 MLE for an MVN 99 4.1.4 Maximum entropy derivation of the Gaussian * 101 4.2 Gaussian discriminant analysis 101 4.2.1 Quadratic discriminant analysis (QDA) 102 4.2.2 Linear discriminant analysis (LDA) 103 4.2.3 Two-class LDA 104 4.2.4 MLE for discriminant analysis 106 4.2.5 Strategies for preventing overfitting 106 4.2.6 Regularized LDA * 107 4.2.7 Diagonal LDA 108 4.2.8 Nearest shrunken centroids classifier * 109 4.3 Inference in jointly Gaussian distributions 110 4.3.1 Statement of the result 111 4.3.2 Examples 111 4.3.3 Information form 115 4.3.4 Proof of the result * 116 4.4 Linear Gaussian systems 119 4.4.1 Statement of the result 119 4.4.2 Examples 120 4.4.3 Proof of the result * 124 4.5 Digression: The Wishart distribution * 125 4.5.1 Inverse Wishart distribution 126 4.5.2 Visualizing the Wishart distribution * 127 4.6 Inferring the parameters of an MVN 127 4.6.1 Posterior distribution of μ 128 4.6.2 Posterior distribution of Σ * 128 4.6.3 Posterior distribution of μ and Σ * 132 4.6.4 Sensor fusion with unknown precisions * 138 x CONTENTS 5 Bayesian statistics 149 5.1 Introduction 149 5.2 Summarizing posterior distributions 149 5.2.1 MAP estimation 149 5.2.2 Credible intervals 152 5.2.3 Inference for a difference in proportions 154 5.3 Bayesian model selection 155 5.3.1 Bayesian Occam’s razor 156 5.3.2 Computing the marginal likelihood (evidence) 158 5.3.3 Bayes factors 163 5.3.4 Jeffreys-Lindley paradox * 164 5.4 Priors 165 5.4.1 Uninformative priors 165 5.4.2 Jeffreys priors * 166 5.4.3 Robust priors 168 5.4.4 Mixtures of conjugate priors 168 5.5 Hierarchical Bayes 171 5.5.1 Example: modeling related cancer rates 171 5.6 Empirical Bayes 172 5.6.1 Example: beta-binomial model 173 5.6.2 Example: Gaussian-Gaussian model 173 5.7 Bayesian decision theory 176 5.7.1 Bayes estimators for common loss functions 177 5.7.2 The false positive vs false negative tradeoff 180 5.7.3 Other topics * 184 6 Frequentist statistics 191 6.1 Introduction 191 6.2 Sampling distribution of an estimator 191 6.2.1 Bootstrap 192 6.2.2 Large sample theory for the MLE * 193 6.3 Frequentist decision theory 194 6.3.1 Bayes risk 195 6.3.2 Minimax risk 196 6.3.3 Admissible estimators 197 6.4 Desirable properties of estimators 200 6.4.1 Consistent estimators 200 6.4.2 Unbiased estimators 200 6.4.3 Minimum variance estimators 201 6.4.4 The bias-variance tradeoff 202 6.5 Empirical risk minimization 204 6.5.1 Regularized risk minimization 205 6.5.2 Structural risk minimization 206 6.5.3 Estimating the risk using cross validation 206 6.5.4 Upper bounding the risk using statistical learning theory * 209 CONTENTS xi 6.5.5 Surrogate loss functions 210 6.6 Pathologies of frequentist statistics * 211 6.6.1 Counter-intuitive behavior of confidence intervals 212 6.6.2 p-values considered harmful 213 6.6.3 The likelihood principle 214 6.6.4 Why isn’t everyone a Bayesian? 215 7 Linear regression 217 7.1 Introduction 217 7.2 Model specification 217 7.3 Maximum likelihood estimation (least squares) 217 7.3.1 Derivation of the MLE 219 7.3.2 Geometric interpretation 220 7.3.3 Convexity 221 7.4 Robust linear regression * 223 7.5 Ridge regression 225 7.5.1 Basic idea 225 7.5.2 Numerically stable computation * 227 7.5.3 Connection with PCA * 228 7.5.4 Regularization effects of big data 230 7.6 Bayesian linear regression 231 7.6.1 Computing the posterior 232 7.6.2 Computing the posterior predictive 233 7.6.3 Bayesian inference when σ2 is unknown * 234 7.6.4 EB for linear regression (evidence procedure) 238 8 Logistic regression 245 8.1 Introduction 245 8.2 Model specification 245 8.3 Model fitting 245 8.3.1 MLE 246 8.3.2 Steepest descent 247 8.3.3 Newton’s method 249 8.3.4 Iteratively reweighted least squares (IRLS) 250 8.3.5 Quasi-Newton (variable metric) methods 251 8.3.6 2 regularization 252 8.3.7 Multi-class logistic regression 252 8.4 Bayesian logistic regression 254 8.4.1 Laplace approximation 255 8.4.2 Derivation of the BIC 255 8.4.3 Gaussian approximation for logistic regression 256 8.4.4 Approximating the posterior predictive 256 8.4.5 Residual analysis (outlier detection) * 260 8.5 Online learning and stochastic optimization 261 8.5.1 Online learning and regret minimization 262 xii CONTENTS 8.5.2 Stochastic optimization and risk minimization 262 8.5.3 The LMS algorithm 264 8.5.4 The perceptron algorithm 265 8.5.5 A Bayesian view 266 8.6 Generative vs discriminative classifiers 267 8.6.1 Pros and cons of each approach 268 8.6.2 Dealing with missing data 269 8.6.3 Fisher’s linear discriminant analysis (FLDA) * 271 9 Generalized linear models and the exponential family 281 9.1 Introduction 281 9.2 The exponential family 281 9.2.1 Definition 282 9.2.2 Examples 282 9.2.3 Log partition function 284 9.2.4 MLE for the exponential family 286 9.2.5 Bayes for the exponential family * 287 9.2.6 Maximum entropy derivation of the exponential family * 289 9.3 Generalized linear models (GLMs) 290 9.3.1 Basics 290 9.3.2 ML and MAP estimation 292 9.3.3 Bayesian inference 293 9.4 Probit regression 293 9.4.1 ML/MAP estimation using gradient-based optimization 294 9.4.2 Latent variable interpretation 294 9.4.3 Ordinal probit regression * 295 9.4.4 Multinomial probit models * 295 9.5 Multi-task learning 296 9.5.1 Hierarchical Bayes for multi-task learning 296 9.5.2 Application to personalized email spam filtering 296 9.5.3 Application to domain adaptation 297 9.5.4 Other kinds of prior 297 9.6 Generalized linear mixed models * 298 9.6.1 Example: semi-parametric GLMMs for medical data 298 9.6.2 Computational issues 300 9.7 Learning to rank * 300 9.7.1 The pointwise approach 301 9.7.2 The pairwise approach 301 9.7.3 The listwise approach 302 9.7.4 Loss functions for ranking 303 10 Directed graphical models (Bayes nets) 307 10.1 Introduction 307 10.1.1 Chain rule 307 10.1.2 Conditional independence 308 CONTENTS xiii 10.1.3 Graphical models 308 10.1.4 Graph terminology 309 10.1.5 Directed graphical models 310 10.2 Examples 311 10.2.1 Naive Bayes classifiers 311 10.2.2 Markov and hidden Markov models 312 10.2.3 Medical diagnosis 313 10.2.4 Genetic linkage analysis * 315 10.2.5 Directed Gaussian graphical models * 318 10.3 Inference 319 10.4 Learning 320 10.4.1 Plate notation 320 10.4.2 Learning from complete data 322 10.4.3 Learning with missing and/or latent variables 323 10.5 Conditional independence properties of DGMs 324 10.5.1 d-separation and the Bayes Ball algorithm (global Markov properties) 324 10.5.2 Other Markov properties of DGMs 327 10.5.3 Markov blanket and full conditionals 327 10.6 Influence (decision) diagrams * 328 11 Mixture models and the EM algorithm 337 11.1 Latent variable models 337 11.2 Mixture models 337 11.2.1 Mixtures of Gaussians 339 11.2.2 Mixture of multinoullis 340 11.2.3 Using mixture models for clustering 340 11.2.4 Mixtures of experts 342 11.3 Parameter estimation for mixture models 345 11.3.1 Unidentifiability 346 11.3.2 Computing a MAP estimate is non-convex 347 11.4 The EM algorithm 348 11.4.1 Basic idea 349 11.4.2 EM for GMMs 350 11.4.3 EM for mixture of experts 357 11.4.4 EM for DGMs with hidden variables 358 11.4.5 EM for the Student distribution * 359 11.4.6 EM for probit regression * 362 11.4.7 Theoretical basis for EM * 363 11.4.8 Online EM 365 11.4.9 Other EM variants * 367 11.5 Model selection for latent variable models 370 11.5.1 Model selection for probabilistic models 370 11.5.2 Model selection for non-probabilistic methods 370 11.6 Fitting models with missing data 372 xiv CONTENTS 11.6.1 EM for the MLE of an MVN with missing data 373 12 Latent linear models 381 12.1 Factor analysis 381 12.1.1 FA is a low rank parameterization of an MVN 381 12.1.2 Inference of the latent factors 382 12.1.3 Unidentifiability 383 12.1.4 Mixtures of factor analysers 385 12.1.5 EM for factor analysis models 386 12.1.6 Fitting FA models with missing data 387 12.2 Principal components analysis (PCA) 387 12.2.1 Classical PCA: statement of the theorem 387 12.2.2 Proof * 389 12.2.3 Singular value decomposition (SVD) 392 12.2.4 Probabilistic PCA 395 12.2.5 EM algorithm for PCA 396 12.3 Choosing the number of latent dimensions 398 12.3.1 Model selection for FA/PPCA 398 12.3.2 Model selection for PCA 399 12.4 PCA for categorical data 402 12.5 PCA for paired and multi-view data 404 12.5.1 Supervised PCA (latent factor regression) 405 12.5.2 Partial least squares 406 12.5.3 Canonical correlation analysis 407 12.6 Independent Component Analysis (ICA) 407 12.6.1 Maximum likelihood estimation 410 12.6.2 The FastICA algorithm 411 12.6.3 Using EM 414 12.6.4 Other estimation principles * 415 13 Sparse linear models 421 13.1 Introduction 421 13.2 Bayesian variable selection 422 13.2.1 The spike and slab model 424 13.2.2 From the Bernoulli-Gaussian model to 0 regularization 425 13.2.3 Algorithms 426 13.3 1 regularization: basics 429 13.3.1 Why does 1 regularization yield sparse solutions? 430 13.3.2 Optimality conditions for lasso 431 13.3.3 Comparison of least squares, lasso, ridge and subset selection 435 13.3.4 Regularization path 436 13.3.5 Model selection 439 13.3.6 Bayesian inference for linear models with Laplace priors 440 13.4 1 regularization: algorithms 441 13.4.1 Coordinate descent 441 CONTENTS xv 13.4.2 LARS and other homotopy methods 441 13.4.3 Proximal and gradient projection methods 442 13.4.4 EM for lasso 447 13.5 1 regularization: extensions 449 13.5.1 Group Lasso 449 13.5.2 Fused lasso 454 13.5.3 Elastic net (ridge and lasso combined) 455 13.6 Non-convex regularizers 457 13.6.1 Bridge regression 458 13.6.2 Hierarchical adaptive lasso 458 13.6.3 Other hierarchical priors 462 13.7 Automatic relevance determination (ARD)/sparse Bayesian learning (SBL) 463 13.7.1 ARD for linear regression 463 13.7.2 Whence sparsity? 465 13.7.3 Connection to MAP estimation 465 13.7.4 Algorithms for ARD * 466 13.7.5 ARD for logistic regression 468 13.8 Sparse coding * 468 13.8.1 Learning a sparse coding dictionary 469 13.8.2 Results of dictionary learning from image patches 470 13.8.3 Compressed sensing 472 13.8.4 Image inpainting and denoising 472 14 Kernels 479 14.1 Introduction 479 14.2 Kernel functions 479 14.2.1 RBF kernels 480 14.2.2 Kernels for comparing documents 480 14.2.3 Mercer (positive definite) kernels 481 14.2.4 Linear kernels 482 14.2.5 Matern kernels 482 14.2.6 String kernels 483 14.2.7 Pyramid match kernels 484 14.2.8 Kernels derived from probabilistic generative models 485 14.3 Using kernels inside GLMs 486 14.3.1 Kernel machines 486 14.3.2 L1VMs, RVMs, and other sparse vector machines 487 14.4 The kernel trick 488 14.4.1 Kernelized nearest neighbor classification 489 14.4.2 Kernelized K-medoids clustering 489 14.4.3 Kernelized ridge regression 492 14.4.4 Kernel PCA 493 14.5 Support vector machines (SVMs) 496 14.5.1 SVMs for regression 497 14.5.2 SVMs for classification 498 xvi CONTENTS 14.5.3 Choosing C 504 14.5.4 Summary of key points 504 14.5.5 A probabilistic interpretation of SVMs 505 14.6 Comparison of discriminative kernel methods 505 14.7 Kernels for building generative models 507 14.7.1 Smoothing kernels 507 14.7.2 Kernel density estimation (KDE) 508 14.7.3 From KDE to KNN 509 14.7.4 Kernel regression 510 14.7.5 Locally weighted regression 512 15 Gaussian processes 515 15.1 Introduction 515 15.2 GPs for regression 516 15.2.1 Predictions using noise-free observations 517 15.2.2 Predictions using noisy observations 518 15.2.3 Effect of the kernel parameters 519 15.2.4 Estimating the kernel parameters 521 15.2.5 Computational and numerical issues * 524 15.2.6 Semi-parametric GPs * 524 15.3 GPs meet GLMs 525 15.3.1 Binary classification 525 15.3.2 Multi-class classification 528 15.3.3 GPs for Poisson regression 531 15.4 Connection with other methods 532 15.4.1 Linear models compared to GPs 532 15.4.2 Linear smoothers compared to GPs 533 15.4.3 SVMs compared to GPs 534 15.4.4 L1VM and RVMs compared to GPs 534 15.4.5 Neural networks compared to GPs 535 15.4.6 Smoothing splines compared to GPs * 536 15.4.7 RKHS methods compared to GPs * 538 15.5 GP latent variable model 540 15.6 Approximation methods for large datasets 542 16 Adaptive basis function models 543 16.1 Introduction 543 16.2 Classification and regression trees (CART) 544 16.2.1 Basics 544 16.2.2 Growing a tree 545 16.2.3 Pruning a tree 549 16.2.4 Pros and cons of trees 550 16.2.5 Random forests 550 16.2.6 CART compared to hierarchical mixture of experts * 551 16.3 Generalized additive models 552 CONTENTS xvii 16.3.1 Backfitting 552 16.3.2 Computational efficiency 553 16.3.3 Multivariate adaptive regression splines (MARS) 553 16.4 Boosting 554 16.4.1 Forward stagewise additive modeling 555 16.4.2 L2boosting 557 16.4.3 AdaBoost 558 16.4.4 LogitBoost 559 16.4.5 Boosting as functional gradient descent 560 16.4.6 Sparse boosting 561 16.4.7 Multivariate adaptive regression trees (MART) 562 16.4.8 Why does boosting work so well? 562 16.4.9 A Bayesian view 563 16.5 Feedforward neural networks (multilayer perceptrons) 563 16.5.1 Convolutional neural networks 564 16.5.2 Other kinds of neural networks 568 16.5.3 A brief history of the field 568 16.5.4 The backpropagation algorithm 569 16.5.5 Identifiability 572 16.5.6 Regularization 572 16.5.7 Bayesian inference * 576 16.6 Ensemble learning 580 16.6.1 Stacking 580 16.6.2 Error-correcting output codes 581 16.6.3 Ensemble learning is not equivalent to Bayes model averaging 581 16.7 Experimental comparison 582 16.7.1 Low-dimensional features 582 16.7.2 High-dimensional features 583 16.8 Interpreting black-box models 585 17 Markov and hidden Markov models 589 17.1 Introduction 589 17.2 Markov models 589 17.2.1 Transition matrix 589 17.2.2 Application: Language modeling 591 17.2.3 Stationary distribution of a Markov chain * 596 17.2.4 Application: Google’s PageRank algorithm for web page ranking * 600 17.3 Hidden Markov models 603 17.3.1 Applications of HMMs 604 17.4 Inference in HMMs 606 17.4.1 Types of inference problems for temporal models 606 17.4.2 The forwards algorithm 609 17.4.3 The forwards-backwards algorithm 610 17.4.4 The Viterbi algorithm 612 17.4.5 Forwards filtering, backwards sampling 616 xviii CONTENTS 17.5 Learning for HMMs 617 17.5.1 Training with fully observed data 617 17.5.2 EM for HMMs (the Baum-Welch algorithm) 618 17.5.3 Bayesian methods for “fitting” HMMs * 620 17.5.4 Discriminative training 620 17.5.5 Model selection 621 17.6 Generalizations of HMMs 621 17.6.1 Variable duration (semi-Markov) HMMs 622 17.6.2 Hierarchical HMMs 624 17.6.3 Input-output HMMs 625 17.6.4 Auto-regressive and buried HMMs 626 17.6.5 Factorial HMM 627 17.6.6 Coupled HMM and the influence model 628 17.6.7 Dynamic Bayesian networks (DBNs) 628 18 State space models 631 18.1 Introduction 631 18.2 Applications of SSMs 632 18.2.1 SSMs for object tracking 632 18.2.2 Robotic SLAM 633 18.2.3 Online parameter learning using recursive least squares 636 18.2.4 SSM for time series forecasting * 637 18.3 Inference in LG-SSM 640 18.3.1 The Kalman filtering algorithm 640 18.3.2 The Kalman smoothing algorithm 643 18.4 Learning for LG-SSM 646 18.4.1 Identifiability and numerical stability 646 18.4.2 Training with fully observed data 647 18.4.3 EM for LG-SSM 647 18.4.4 Subspace methods 647 18.4.5 Bayesian methods for “fitting” LG-SSMs 647 18.5 Approximate online inference for non-linear, non-Gaussian SSMs 647 18.5.1 Extended Kalman filter (EKF) 648 18.5.2 Unscented Kalman filter (UKF) 650 18.5.3 Assumed density filtering (ADF) 652 18.6 Hybrid discrete/continuous SSMs 655 18.6.1 Inference 656 18.6.2 Application: data association and multi-target tracking 658 18.6.3 Application: fault diagnosis 659 18.6.4 Application: econometric forecasting 660 19 Undirected graphical models (Markov random fields) 661 19.1 Introduction 661 19.2 Conditional independence properties of UGMs 661 19.2.1 Key properties 661 CONTENTS xix 19.2.2 An undirected alternative to d-separation 663 19.2.3 Comparing directed and undirected graphical models 664 19.3 Parameterization of MRFs 665 19.3.1 The Hammersley-Clifford theorem 665 19.3.2 Representing potential functions 667 19.4 Examples of MRFs 668 19.4.1 Ising model 668 19.4.2 Hopfield networks 669 19.4.3 Potts model 671 19.4.4 Gaussian MRFs 672 19.4.5 Markov logic networks * 674 19.5 Learning 676 19.5.1 Training maxent models using gradient methods 676 19.5.2 Training partially observed maxent models 677 19.5.3 Approximate methods for computing the MLEs of MRFs 678 19.5.4 Pseudo likelihood 678 19.5.5 Stochastic maximum likelihood 679 19.5.6 Feature induction for maxent models * 680 19.5.7 Iterative proportional fitting (IPF) * 681 19.6 Conditional random fields (CRFs) 684 19.6.1 Chain-structured CRFs, MEMMs and the label-bias problem 684 19.6.2 Applications of CRFs 686 19.6.3 CRF training 692 19.7 Structural SVMs 693 19.7.1 SSVMs: a probabilistic view 693 19.7.2 SSVMs: a non-probabilistic view 695 19.7.3 Cutting plane methods for fitting SSVMs 698 19.7.4 Online algorithms for fitting SSVMs 700 19.7.5 Latent structural SVMs 701 20 Exact inference for graphical models 707 20.1 Introduction 707 20.2 Belief propagation for trees 707 20.2.1 Serial protocol 707 20.2.2 Parallel protocol 709 20.2.3 Gaussian BP * 710 20.2.4 Other BP variants * 712 20.3 The variable elimination algorithm 714 20.3.1 The generalized distributive law * 717 20.3.2 Computational complexity of VE 717 20.3.3 A weakness of VE 720 20.4 The junction tree algorithm * 720 20.4.1 Creating a junction tree 720 20.4.2 Message passing on a junction tree 722 20.4.3 Computational complexity of JTA 725 xx CONTENTS 20.4.4 JTA generalizations * 726 20.5 Computational intractability of exact inference in the worst case 726 20.5.1 Approximate inference 727 21 Variational inference 731 21.1 Introduction 731 21.2 Variational inference 732 21.2.1 Alternative interpretations of the variational objective 733 21.2.2 Forward or reverse KL? * 733 21.3 The mean field method 735 21.3.1 Derivation of the mean field update equations 736 21.3.2 Example: mean field for the Ising model 737 21.4 Structured mean field * 739 21.4.1 Example: factorial HMM 740 21.5 Variational Bayes 742 21.5.1 Example: VB for a univariate Gaussian 742 21.5.2 Example: VB for linear regression 746 21.6 Variational Bayes EM 749 21.6.1 Example: VBEM for mixtures of Gaussians * 750 21.7 Variational message passing and VIBES 756 21.8 Local variational bounds * 756 21.8.1 Motivating applications 756 21.8.2 Bohning’s quadratic bound to the log-sum-exp function 758 21.8.3 Bounds for the sigmoid function 760 21.8.4 Other bounds and approximations to the log-sum-exp function * 762 21.8.5 Variational inference based on upper bounds 763 22 More variational inference 767 22.1 Introduction 767 22.2 Loopy belief propagation: algorithmic issues 767 22.2.1 A brief history 767 22.2.2 LBP on pairwise models 768 22.2.3 LBP on a factor graph 769 22.2.4 Convergence 771 22.2.5 Accuracy of LBP 774 22.2.6 Other speedup tricks for LBP * 775 22.3 Loopy belief propagation: theoretical issues * 776 22.3.1 UGMs represented in exponential family form 776 22.3.2 The marginal polytope 777 22.3.3 Exact inference as a variational optimization problem 778 22.3.4 Mean field as a variational optimization problem 779 22.3.5 LBP as a variational optimization problem 779 22.3.6 Loopy BP vs mean field 783 22.4 Extensions of belief propagation * 783 22.4.1 Generalized belief propagation 783 CONTENTS xxi 22.4.2 Convex belief propagation 785 22.5 Expectation propagation 787 22.5.1 EP as a variational inference problem 788 22.5.2 Optimizing the EP objective using moment matching 789 22.5.3 EP for the clutter problem 791 22.5.4 LBP is a special case of EP 792 22.5.5 Ranking players using TrueSkill 793 22.5.6 Other applications of EP 799 22.6 MAP state estimation 799 22.6.1 Linear programming relaxation 799 22.6.2 Max-product belief propagation 800 22.6.3 Graphcuts 801 22.6.4 Experimental comparison of graphcuts and BP 804 22.6.5 Dual decomposition 806 23 Monte Carlo inference 815 23.1 Introduction 815 23.2 Sampling from standard distributions 815 23.2.1 Using the cdf 815 23.2.2 Sampling from a Gaussian (Box-Muller method) 817 23.3 Rejection sampling 817 23.3.1 Basic idea 817 23.3.2 Example 818 23.3.3 Application to Bayesian statistics 819 23.3.4 Adaptive rejection sampling 819 23.3.5 Rejection sampling in high dimensions 820 23.4 Importance sampling 820 23.4.1 Basic idea 820 23.4.2 Handling unnormalized distributions 821 23.4.3 Importance sampling for a DGM: likelihood weighting 822 23.4.4 Sampling importance resampling (SIR) 822 23.5 Particle filtering 823 23.5.1 Sequential importance sampling 824 23.5.2 The degeneracy problem 825 23.5.3 The resampling step 825 23.5.4 The proposal distribution 827 23.5.5 Application: robot localization 828 23.5.6 Application: visual object tracking 828 23.5.7 Application: time series forecasting 831 23.6 Rao-Blackwellised particle filtering (RBPF) 831 23.6.1 RBPF for switching LG-SSMs 831 23.6.2 Application: tracking a maneuvering target 832 23.6.3 Application: Fast SLAM 834 24 Markov chain Monte Carlo (MCMC) inference 837 xxii CONTENTS 24.1 Introduction 837 24.2 Gibbs sampling 838 24.2.1 Basic idea 838 24.2.2 Example: Gibbs sampling for the Ising model 838 24.2.3 Example: Gibbs sampling for inferring the parameters of a GMM 840 24.2.4 Collapsed Gibbs sampling * 841 24.2.5 Gibbs sampling for hierarchical GLMs 844 24.2.6 BUGS and JAGS 846 24.2.7 The Imputation Posterior (IP) algorithm 847 24.2.8 Blocking Gibbs sampling 847 24.3 Metropolis Hastings algorithm 848 24.3.1 Basic idea 848 24.3.2 Gibbs sampling is a special case of MH 849 24.3.3 Proposal distributions 850 24.3.4 Adaptive MCMC 853 24.3.5 Initialization and mode hopping 854 24.3.6 Why MH works * 854 24.3.7 Reversible jump (trans-dimensional) MCMC * 855 24.4 Speed and accuracy of MCMC 856 24.4.1 The burn-in phase 856 24.4.2 Mixing rates of Markov chains * 857 24.4.3 Practical convergence diagnostics 858 24.4.4 Accuracy of MCMC 860 24.4.5 How many chains? 862 24.5 Auxiliary variable MCMC * 863 24.5.1 Auxiliary variable sampling for logistic regression 863 24.5.2 Slice sampling 864 24.5.3 Swendsen Wang 866 24.5.4 Hybrid/Hamiltonian MCMC * 868 24.6 Annealing methods 868 24.6.1 Simulated annealing 869 24.6.2 Annealed importance sampling 871 24.6.3 Parallel tempering 871 24.7 Approximating the marginal likelihood 872 24.7.1 The candidate method 872 24.7.2 Harmonic mean estimate 872 24.7.3 Annealed importance sampling 873 25 Clustering 875 25.1 Introduction 875 25.1.1 Measuring (dis)similarity 875 25.1.2 Evaluating the output of clustering methods * 876 25.2 Dirichlet process mixture models 879 25.2.1 From finite to infinite mixture models 879 25.2.2 The Dirichlet process 882 CONTENTS xxiii 25.2.3 Applying Dirichlet processes to mixture modeling 885 25.2.4 Fitting a DP mixture model 886 25.3 Affinity propagation 887 25.4 Spectral clustering 890 25.4.1 Graph Laplacian 891 25.4.2 Normalized graph Laplacian 892 25.4.3 Example 893 25.5 Hierarchical clustering 893 25.5.1 Agglomerative clustering 895 25.5.2 Divisive clustering 898 25.5.3 Choosing the number of clusters 899 25.5.4 Bayesian hierarchical clustering 899 25.6 Clustering datapoints and features 901 25.6.1 Biclustering 903 25.6.2 Multi-view clustering 903 26 Graphical model structure learning 907 26.1 Introduction 907 26.2 Structure learning for knowledge discovery 908 26.2.1 Relevance networks 908 26.2.2 Dependency networks 909 26.3 Learning tree structures 910 26.3.1 Directed or undirected tree? 911 26.3.2 Chow-Liu algorithm for finding the ML tree structure 912 26.3.3 Finding the MAP forest 912 26.3.4 Mixtures of trees 914 26.4 Learning DAG structures 914 26.4.1 Markov equivalence 914 26.4.2 Exact structural inference 916 26.4.3 Scaling up to larger graphs 920 26.5 Learning DAG structure with latent variables 922 26.5.1 Approximating the marginal likelihood when we have missing data 922 26.5.2 Structural EM 925 26.5.3 Discovering hidden variables 926 26.5.4 Case study: Google’s Rephil 928 26.5.5 Structural equation models * 929 26.6 Learning causal DAGs 931 26.6.1 Causal interpretation of DAGs 931 26.6.2 Using causal DAGs to resolve Simpson’s paradox 933 26.6.3 Learning causal DAG structures 935 26.7 Learning undirected Gaussian graphical models 938 26.7.1 MLE for a GGM 938 26.7.2 Graphical lasso 939 26.7.3 Bayesian inference for GGM structure * 941 26.7.4 Handling non-Gaussian data using copulas * 942 xxiv CONTENTS 26.8 Learning undirected discrete graphical models 942 26.8.1 Graphical lasso for MRFs/CRFs 942 26.8.2 Thin junction trees 944 27 Latent variable models for discrete data 945 27.1 Introduction 945 27.2 Distributed state LVMs for discrete data 946 27.2.1 Mixture models 946 27.2.2 Exponential family PCA 947 27.2.3 LDA and mPCA 948 27.2.4 GaP model and non-negative matrix factorization 949 27.3 Latent Dirichlet allocation (LDA) 950 27.3.1 Basics 950 27.3.2 Unsupervised discovery of topics 953 27.3.3 Quantitatively evaluating LDA as a language model 953 27.3.4 Fitting using (collapsed) Gibbs sampling 955 27.3.5 Example 956 27.3.6 Fitting using batch variational inference 957 27.3.7 Fitting using online variational inference 959 27.3.8 Determining the number of topics 960 27.4 Extensions of LDA 961 27.4.1 Correlated topic model 961 27.4.2 Dynamic topic model 962 27.4.3 LDA-HMM 963 27.4.4 Supervised LDA 967 27.5 LVMs for graph-structured data 970 27.5.1 Stochastic block model 971 27.5.2 Mixed membership stochastic block model 973 27.5.3 Relational topic model 974 27.6 LVMs for relational data 975 27.6.1 Infinite relational model 976 27.6.2 Probabilistic matrix factorization for collaborative filtering 979 27.7 Restricted Boltzmann machines (RBMs) 983 27.7.1 Varieties of RBMs 985 27.7.2 Learning RBMs 987 27.7.3 Applications of RBMs 991 28 Deep learning 995 28.1 Introduction 995 28.2 Deep generative models 995 28.2.1 Deep directed networks 996 28.2.2 Deep Boltzmann machines 996 28.2.3 Deep belief networks 997 28.2.4 Greedy layer-wise learning of DBNs 998 28.3 Deep neural networks 999 CONTENTS xxv 28.3.1 Deep multi-layer perceptrons 999 28.3.2 Deep auto-encoders 1000 28.3.3 Stacked denoising auto-encoders 1001 28.4 Applications of deep networks 1001 28.4.1 Handwritten digit classification using DBNs 1001 28.4.2 Data visualization and feature discovery using deep auto-encoders 1002 28.4.3 Information retrieval using deep auto-encoders (semantic hashing) 1003 28.4.4 Learning audio features using 1d convolutional DBNs 1004 28.4.5 Learning image features using 2d convolutional DBNs 1005 28.5 Discussion 1005 Notation 1009 Bibliography 1015 Indexes 1047 Index to code 1047 Index to keywords 1050
标签: Machine Learning spec 2012 Lis MAC
Machine Learning_ A Probabilistic Perspective [Murphy 2012-08-24].pdf
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论