在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → Matlab生成视差图

Matlab生成视差图

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:0.95M
  • 下载次数:15
  • 浏览次数:185
  • 发布时间:2021-02-09
  • 实例类别:一般编程问题
  • 发 布 人:好学IT男
  • 文件格式:.pdf
  • 所需积分:2
 

实例介绍

【实例简介】
双目视觉,根据块匹配方法的视差图生成。依据Matlab生成视差图。
Dbasic= zeros(size(leftI),'single') disparity range 15; Selects (2*halfBlocksize+1)-by-(2*halfBlocksize+1) block halfblocksize =3 blocksize 2*halfblocksize+1 Allocate space for all template matchers tats cell(blocksize) g Scan over all rows for m=1: size(leftI, 1) Set min/max row bounds for image block inr=max(l, m-halfBlocksize); maxr min(size(leftI, 1), mthalfBlocksize)i ‰ Scan over a11 columns for n=1: size(leftI, 2 minc =max(1, n-halfBlocksize); maxc min(size(leftI, 2),nthalfBlocksize) Compute disparity bounds mind max( -disparityRange, 1-minc i maxd min( disparityRange, size(leftI, 2)-maxc 9 Construct template and region of interest template rightI(minr: maxr, minc: maxc); templateCenter floor((size(template)+1)/2) roi = [minr+template Center(1)-2 mincttemplateCenter(2)+mind-2 1 maxd-mind+1] Lookup proper TemplateMatcher object, create if empty if isempty( tmatssize(template, 1),size(template, 2)1) tmatsisize(template, 1),size(template, 2)1 video. TemplateMatcher( ROIInputPort', true); thisTemplateMatcher tmatsfsize(template, 1),size(template, 2)); Run TemplateMatcher object loc step( thisTemplateMatcher, leftI, template, roi); basic(m) m,n)=1oc(2)-roi(2) nd end end In the results bclow, the basic block matching docs well, as the correct shape of thc stcrco scene is recovered. However, there are noisy patches and bad depth estimates everywhere, especially on the ceiling. These are caused when no strong image features appear inside of the 7-by-7-pixel windows being compared. Then the matching process is subject to noise since each pixel chooses its disparity independently of all the other pixels For display purposes, we saturate the depth map to have only positive values. In general slight angular misalignment of the stereo cameras used for image acquisition can allow both positive and negative disparities to appear validly in the depth map In this case, however, the stereo cameras were near perfectly parallel, so the true disparities have only one sign. Thus this correction is valid figure(3), clf; imshow(Dbasic, []), axis image, colormap( jet), colorbar caxis(lo disparity d); title( ' depth map from basic block matching) Depth map from basic black matching 10 Step 3. Sub-pixel estimation The disparity estimates returned by block matching are all integer-valued so the above depth map exhibits contouring effects where there are no smooth transitions between regions of diffcrcnt disparity. This can bc amclioratcd by incorporating sub-pixcl computation into thc matching metric. Previously we only took the location of the minimum cost as the disparity, but now we take into consideration the minimum cost and the two neighboring cost values We fit a parabola to these three values, and analytically solve for the minimum to get the sub pixel correction DbasicSubpixel= zeros(size(leftI),'single) tmats cell(2*halfBlocksize+1); for m=1: size(lefti 1 Set min/max row bounds for image block minr =max(1, m-halfBlocksize); maxr min(size(leftI, 1),m+halfBlocksize) g Scan over all columns for n=l: size(leftI,2 minc max(1, n-halfBlocksize) maxc min(size(leftI, 2),n+halfBlocksize) %6 Compute disparity bounds mind max( -disparityRange, 1 -minc i maxd min( disparity Range, size(leftI, 2)-maxc )j Construct template and region of interest template rightI(minr: maxr, minc: maxc) templateCenter floor((size(template)+1)/2); roi =[minr+templateCenter(1)-2 minc+templateCenter(2)+mind-2 1 maxd-mind+1 Lookup proper TemplateMatcher object; create if empty if isempty(tmatsisize(template, 1),size(template, 2)1) tmatsisize(template, 1), size(template, 2)] video. TemplateMatcher( ROIInputPort',true BestMatchNeighborhoodoutputPort', true); thisTemplateMatcher tmatsisize(template, 1),size(template, 2)J; Run TemplateMatcher object loc, a2]=step(thisTemplateMatcher, leftI, template, roi)i x single(loc(2)- roi(2 )+ mind); Subpixel refinement of index DbasicSubpixel(m, n)=ix-05*(a2(2,3)-a2(2, 1)) (a2(2,1)-2*a2(2,2)+a2(2,3) end end Rc-running basic block matching wc achieve the result bclow where the contouring cffccts are mostly removed and the disparity estimates are correctly refined. This is especially evident along the walls figure(1), clf; imshow(DbasicSubpixel,[]), axis image, colormap( 'jet ) colorbar; caxis(lo disparityrange]; title( Basic block matching with sub-pixel accuracy ' Basic block matching with sub-pixel accuracy 15 Step 4. Dynamic programming As mentioned above, basic block matching creates a noisy disparity image. This can be improved by introducing a smoothness constraint. Basic block matching chooses the optimal disparity for each pixel based on its own cost function alone. Now we want to allow a pixel to have a disparity with possibly sub-optimal cost for it locally. This extra cost must be offset by increasing that pixel's agreement in disparity with its neighbors. In particular, we constrain each disparity estimate to lie with 3 values of its neighbors disparities, where its neighbors are the adjacent pixels along an image row. The problem of finding the optimal disparity estimates for a row of pixels now becomes one of finding the"optimal path"from one side of the image to the other. To find this optimal path, we use the underlying block matching metric as the cost function and constrain the disparities to only change by a certain amount between adjacent pixels. this is a problem that can be solved efficiently using the technique of dynamic programming [3, 4 Ddynamic zeros(size(leftI),single ) finf le3; False infinity disparity Cost finf*ones (size(leftI, 2),2*disparityRange 1,'single) disparity Penalty =0.5;% Penalty for disparity disagreement between pixels Scan over all rows for m=1: size leftI, 1) disparityCost(: )=finf; Set min/max row bounds for image block minr max(l, m-halfBlocksize) maxr min(size(leftI, 1),m+halfBlocksize; Scan over all columns for n=1: size(leftI, 2) minc max(1, n-halfBlocksize) maxc min(size(leftI, 2),nthalfBlocksize); Compute disparity bounds mind max( -disparityRange, 1-minc ) maxd min( disparityRange, size(leftI, 2)-maxc )i 9 Compute and save all matching costs for d=mind: maxd disparityCost(n, d+ disparityRange +1) sum(sum(abs(leftI(minr: maxr,(minc: maxc )+d) rightI(minr: maxr, minc: maxc)))) end nd Process scanline disparity costs with dynamic programming optimalIndices zeros(size(disparity Cost),'single); p= disparity Cost(end, for j=size(disparityCost 1)-1: -1: 1 9 False infinity for this level cfinf =(size(disparityCost, 1)-j+1)*finf Construct matrix for finding optimal move for each column individuall [v, ix]= min([cfinf cfinf cp(1: end-4)+3*disparity Penalty; cfinf cp(1: end-3)+2*disparityPenalty cp(1: end-2)+disparityPenalty cp(2: end-1) cp( 3: end)+disparityPenalty cp(4: end)+2 disparityPenalty cfinf; cp(5: end)+3*disparity Penalty cfinf cfinf],[,1) cp= lcfinf disparity Cost(3, 2: end-1)+v cfinf]i Record optimal routes optimalIndices(j, 2: end-1)=(2: size(disparity Cost, 2)-1)+(ix-4) end Recover optimal route min(cp); Ddynamic(m,1)=i×; for k=1: size(Ddynamic, 2)-1 Ddynamic(m,k+1)=optimalIndices(k (1, min(size(optimalIndices, 2) d(ddynamic(m,k))))) end en Ddynamic Ddynamic disparity Range -1; The image below shows the stereo result refined by applying dynamic programming to each row individually. dynamic programming docs introducc crrors of its own by blurring the edges around object boundaries due to the smoothness constraint. Also, it does nothing to smooth"between rows, which is why a striation pattern now appears on the left side foreground chair. Despite these limitations, the result is significantly improved, with the noise along the walls and ceiling nearly completely removed, and with many of the foreground objects being better reconstructed figure( 3), clf imshow(Ddynamic, [], axis image, colormap(jet ) colorbar caxis(lo disparityRange] title(' Block matching with dynamic programming) Block matching with d ynamic programming 10 口 Step 5. Image Pyramiding While dynamic programming can improve the accuracy of the stereo image, basic block matching is still an cxpcnsivc opcration, and dynamic programming only adds to thc burden One solution is to use image pyramiding and telescopic search to guide the block matching [5,7]. With the full-size image, we had to search over a +15-pixel range to properly detect the disparities in the image. If we had down-sized the image by a factor of two, however, this search could have been reduced to +7 pixels on an image a quarter of the area, meaning this step would cost a factor of 8 less. Then we use the disparity estimates from this down-sized operation to seed the search on the larger image and therefore we only need to search over a smaller rangc of disparities The below example performs this telescoping stereo matching using a three-level image pyramid. We use the Pyramid and Geometricscaler System objects, and we have wrapped up the preceding block matching code into the function vipstereo blockmatch m for simplicity The disparity search range is only +3 pixels at each level, making it over 5x faster to compute than basic block matching. Yet the results compare favorably Construct a three-level pyramid pyramids cell(1, 4) pyramids[1].L leftI; pyramids[1.R= rightI for i=2: length(pyramids) hPyr video Pyramid (p yramidLeve1’,1 ); pyramids i].L= single(step(hPyr, pyramidsfi-1.L)) end pyramidsfiJ. R= single(step(hPyrPyramidsfi-1]R)); Declare original search radius as +/-4 disparities for every pixel smallRange single(3 disparityMin repmat(-smallRange, size(pyramidsfend] L)); disparityMax repmat( smallRange, size(pyramidsiend. L)) Do telescoping search over pyramid levels for i=length (pyramids ): -1: 1 Pyramid vipstereo blockmatch(pyramidsfif. L, pyramidsfi. R disparityMin, disparityMax, false, true, 3) if i>1 Scale disparity values for next level hGsca video. Geometricscaler( InterpolationMethod, Nearest neighbor izeMethod', Number of output rows and columns, Size, size(pyramids[i-1.L)); Pyramid =2step(hGsca, Pyramid); Maintain search radius of +/-smaliRange disparityMin =Pyramid- smallRange; disparityMax = Pyramid smallRange: end end figure(3), clf; imshow(Pyramid,[D, colormap( jet ) colorbar, axis image; caxis(lo disparityRangel); title( Four-level pyramid block matching); Four-level pyramid block matching 5 Step 6. Combined pyramiding and dynamic programming Finally wc merge the above techniques and run dynamic programming along with image pyramiding, where the dynamic programming is run on the disparity estimates output by every pyramid level. The results compare well with the highest-quality results we have obtained so far, and are still achieved at a reduced computational burden versus basic block matching It is also possible to use sub-pixel methods with dynamic programming, and we show the results of all three techniques in the second image. As before, sub-pixeling reduces contouring effects and clearly improves accuracy. The previous code has been bundled into vipstereo blockmatch combined, m, which exposes all of the options previously presented as parameter-value pairs DpyramidDynamic vipstereo blockmatch_ combined (lefti, rightI NumPyramids',3,'DisparityRange', 4, 'DynamicProgramming', true); fi gure(3), clf C imshow(DpyramidDynamic, [I, axis( image), colorbar, colormap jet; caxis([o disparityRanged); title( 3-level pyramid with dynamic programming); DdynamicSubpixel vipstereo blockmatch combined (leftI, rightI, NumPyramids,3, DisparityRange,4, DynamicProgramming, true, Subpixel, true); figure(4), clf imshow(DdynamicSubpixel, []), axis image, colormap('jet'), colorbar; caxis(lo disparityRange d title( Pyramid with dynamic programming and sub-pixel accuracy ' ) 3-level pyramid with dynamic prograrmming 10 Pyramid with dy namic programming and sub-pixel accurad 15 Step 7. Backprojection With a stereo depth map and knowledge of the intrinsic parameters of the camera, it is possible to backproject image pixels into 3D points [1, 2]. One way to compute the camera intrinsics is with the MaTLAB Camera Calibration Toolbox 6 from the California Institute of Technology(R. Such a tool will produce an intrinsics matrix, K, of the form k=[focal length_ x skew x camera center x 0 focal length y camera center y 【实例截图】
【核心代码】

标签:

实例下载地址

Matlab生成视差图

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警