在好例子网,分享、交流、成长!
您当前所在位置:首页Others 开发实例一般编程问题 → Stephen Boyd-《Convex Optimization》

Stephen Boyd-《Convex Optimization》

一般编程问题

下载此实例
  • 开发语言:Others
  • 实例大小:3.74M
  • 下载次数:9
  • 浏览次数:170
  • 发布时间:2021-01-31
  • 实例类别:一般编程问题
  • 发 布 人:好学IT男
  • 文件格式:.pdf
  • 所需积分:2
 

实例介绍

【实例简介】
金典之作《凸优化》英文原版-斯坦福大学课程用书 此文档仅用于学习交流使用,请勿用做商业用途,违者后果自负
Convex Optimization Stephen boyd Department of Elcctrical Enginccring Stanford universitv Lieven Vandenberghe Electrical Engineering Department University of California. Los Angeles CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paolo, Delh Cambridge University Press The Edinburgh Building, Cambridge, CB2 &RU, UK Published in the United States of America by Cambridge University Press, New York http://www.cambridge.org Informationonthistitlewww.cambridge.org/9780521833783 Cambridge University Press 2004 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements no reproduction of any part may take place without the written permission of Cambridge University Press First published 2004 Seventh printing with corrections 2009 Printed in the United Kingdom at the University Press, Cambridge A catalogue record for this publication is available from the british library Library of Congress Cataloguing-in-Publication data boyd, Stephen p Convex Optimization/ Stephen Boyd Lieven Vandenberghe Includes bibliographical references and index ISBN0521833787 1. Mathematical optimization. 2. Convex functions. I. Vandenberghe, Lieven. II. Title QA402.5.B692004 2003063284 ISBN 978-0-521-83378-3 hardback Cambridge University Press has no responsiblity for the persistency or accuracy of URls for cxtcrnal or third-party internet websites referred to in this publication, and docs not tee that any content on is or will remain. accu Anna, Nicholas and nora Daniel and Margriet Contents Prefa 1 Introduction 1.1 Mathematical optimization 1.2 Least-squares and linear programming 4 1.3 Convex optimization 1. 4 Nonlinear optimization 1.5 Outline 1.6 Notation 14 Bibliography Theory 19 2 Convex sets 21 2.1 Affine and convex sets 21 2.2 Some important examples 27 2.3 Operations that preserve convexity 35 2.4 Generalized inequalities 2.5S 2.6 Dual cones and generalized inequalities 51 Bibliograph 59 Exercises 60 3 Convex functions 67 3.1 Basic properties and examples 67 3.2 Operations that preserve convexity 3.3 The conjugate function 90 3.4 Quasiconvex functions 95 3.5 Log-concave and log-convex functions 104 3.6 Convexity with respect to generalized inequalities .108 Bibliograph excises 113 Content: 4 Convex optimization problems 127 4.1 Opti on problems 127 4.2C 136 4.3 Linear optimization problems 146 4.4 Quadratic optimization probl 152 4.5 Geometric pr g 160 4.6 generalized inequality constraints 167 4.7 Vector optimization 174 Bibliography 188 excises 189 5 Duality 215 5.1 The Lagrange dual function ..215 5.2 The lagr dual problem 223 5. 3 Geometric interpretation 232 5.4 Saddle-point interpretation 237 5.5 optimality conditions ..241 5.6 Perturbation and sensitivity ana lysis 249 5.7 Exampl 253 5. 8 T heorems of alternatives 258 5.9 Generalized inequalities 264 Bibliograph 272 Xercises 273 I Applications 289 6 Approximation and fitting 291 6.1 Norm approximation 291 6. 2 Least-norm probler 302 6. 3 Regularized approximation 05 6. 4 Robust approximation 6.5 Function fitting and interpolation 324 Bibliography 343 E× excises 44 7 Statistical estimation 351 7.1 Parametric distribution estimation 351 7. 2 Nonparametric distribution estimation 359 7.3 Optimal detector design and hypothesis testing 364 7. 4 Chebyshev and Chernoff bounds 374 7.5 Experiment design 384 Bibliography 392 Exerci 393 Content: 8 Geometric problems 397 8.1 Projection on a set 397 8.2 Distance between sets 402 8.3 Euclidean distance and angle problems 405 8.4 Extremal volume ellipso 410 8.5 Centering 416 8.6 Classificati 422 8.7 Placement and location 432 8.8 Floor planning 438 Bibliography 446 Exercises 447 I Algorithms 455 9 Unconstrained minimization 457 9.1 Unconstrained minimization problems 45′ 9.2D 463 9.3 Gradient descent method .466 9.4 Steepest descent method 475 9.5 Newtons method 484 9.6 Self-co 9.7 Implementation lography 10 Equality constrained 521 10.1 Equality constrained minimization problems .521 10.2 Newton's method with equa lity constraints 525 10.3 Infeasible start Newton method 531 10.4 Implementation 542 Bibliograph E× excises 557 11 Interior-point methods 561 l1.1 Inequality constrained minimization problems 561 11.2 Logarithmic barrier function and central path 562 11.3 The barrier method 568 11.4 Feasibility and phase I methods 11.5 Com plexity analysis via self-concordance 585 11.6 Problems with generalized inequalities 596 11.7 Primal-dual interior-point methods 11. 8 Implementation 615 Bibliography 621 Ex xercises 623 【实例截图】
【核心代码】

标签:

实例下载地址

Stephen Boyd-《Convex Optimization》

不能下载?内容有错? 点击这里报错 + 投诉 + 提问

好例子网口号:伸出你的我的手 — 分享

网友评论

发表评论

(您的评论需要经过审核才能显示)

查看所有0条评论>>

小贴士

感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。

  • 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
  • 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
  • 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
  • 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。

关于好例子网

本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明

;
报警