实例介绍
一部较好地关于,动态模型估计的书籍。希望能够帮助到需要的朋友。
Stochastic models, estimation and control VOLUME 1 PETER S MAYBECK DEPARTMENT OF ELECTRICAL ENGINEERING AIR FORCE INSTITUTE OF TECHNOLOGY WRIGHT-PATTERSON AIR FORCE BASE OHIO ACADEMIC PRESS New York San Francisco London 1979 A Subsidiary of Harcourt Brace Jovanovich, Publishers CoPYRIGHT 1979, BY ACADEMIC PRESS, INC. ALL RIGHTS RESERVED NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS. ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WTTHOUT PERMISSION IN WRITING FROM THE PUBLISHER ACADEMIC PRESS. INC 111 Fifth Avenue, New York. New York 10003 United Kingdom Edition published b ACADEMIC PRESS, INC(LONDON)LTD 24/28 Oval Road, London NW1 7DX Library of Congress Cataloging in Publication Data May beck, Peter S Stochastic models estimation and control (Mathematics in science and engineering v. Includes bibliographies. 1. System analysis. 2. Control theory. 3. Estimation theory I. Title. II. Series. QA402M37 519.2 78-8836 ISBN0-12-480701-1(v.1 PRINTED IN THE UNITED STATES OF AMERICA 79808182987654321 To beverly This page intentionally left blank Contents Pref Contents of volume 2 XV Notation Chapter 1 Introduction 1.1 Why Stochastic Models, Estimation, and Control? 1.2 Overview of the Text 1.3 The Kalman Filter: An Introduction to Concepts 1. 4 Basic Assumptions 1.5 A Simple Example 1.6 A Preview 15 General References 15 Appendix and problems 16 References Chapter 2 Deterministic system models 2.2 Continuous-Time Dynamic Models 2. 3 Solutions to State Differential Equations 37 2. 4 Discrete-Time Measurements 42 2.5 Controllability and Observability 43 2.6 Summary Refere Problems Chapter 3 Probability theory and static models 3.1 Introduction 2 Probability and Random variables 3. 3 Probability Distributions and densities 70 3.4 Conditional Probability and Densities 76 CONTENTS 3.5 Functions of random variables 3.6 Expectation and moments of random variables 3.7 Conditional Expectations 38C 3. 9 Gaussian Random vectors 101 3.10 Linear Operations on Gaussian Random Variables 11 3.11 Estimation with Static Linear Gaussian System models 【I4 122 References 122 Problems 123 Chapter 4 Stochastic processes and linear dynamic system models 4.1 Introduction 4.2 Stochastic Processes 133 4.3 Stationary Stochastic Processes and Power Spectral Density 4.4 System Modeling: Objecti 4.5 Foundations: White Gaussian noise and brownian motion 4.6 Stochastic Integrals 156 4.7 Stochastic Differentials 162 4.8 Linear Stochastic Differential Equations 163 4. 9 Linear Stochastic Difference Equations 4. 10 The Overall System Model 174 4. 11 Shaping filters and State augmentation 180 4.12 Power Spectrum Concepts and Shaping Filters 4. 13 Generating Practical System Models y Refer 195 Problems Chapter 5 Optimal filtering with linear system models 5.1 Introduction 5.2 Problem Formulation 203 5.3 The Discrete- Time(Sampled Data) Optimal Estimator The Kalman Filter 206 5.4 Statistics of Processes within the Filter Structure 226 5.5 Other Criteria of optimality 5.6 Covariance Measurement Update Computations 236 5.7 Inverse Covariance Form 238 5.8 Stability 242 5.9 Correlation of Dynamic Driving Noise and measurement Noise 246 5. 10 Time-Correlated Measurement Noise: Perfect Measurements 248 5.11 Continuous-Time Filter 5.12 Wiener Filtering and Frequency Domain Techniques 267 5.13S 275 References 276 Problem CONTENTS Chapter 6 Design and performance analysis of Kalman filters 6.1 Introduction 6.2 The Requisite of Engineering Judgmet 6.3 Application of Kalman Filtering to Inertial Navigation 6.4 INS Aided by Position Data: A Simple Example 6.5 Doppler-Aided INS 305 6.6 INS Calibration and Alignment Using Direct Kalman Filter 317 6.7 Generating Alternative designs 322 6.8 Performance(Sensitivity) Analysis 325 6.9 Systematic Design Procedure 341 6.10 INS Aided by Navigation Satellites 342 6. 11 Practical Aspects of Implementation 351 6.12 Summary 358 References 359 Problems Chapter 7 Square root filtering 7.1 Introduction 368 7.2 Matrix Square roots 370 7.3 Covariance Square Root Filter for Qd=0 373 7.4 Vector-Valued Measurements 374 7.5 Covariance Square Root Filter for Qdt0 377 7.6 Inverse Covariance square root filter 388 7.7 U-D Covariance factorization filter 392 7.8 Filter Performance and requirements 7.9 Summary 405 References 405 Problems 406 Inde 41 This page intentionally left blank 【实例截图】
【核心代码】
标签:
相关软件
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论