实例介绍
经典之作,收藏
Digital Signal Processing Fourth edition John G. Proakis Department of Electrical and Computer Engineering Northeastern University Boston Massachusetts Dimitris G. Manolakis MIT Lincoln laboratory Lexington, Massachusetts PEARSON Prentice Hall Upper Saddle river, New Jersey 07458 Contents Preface xviii Introduction 1.1 Signals, Systems, and Signal Processing 1. 1. 1 Basic Elements of a Digital Signal Processing system 1.1.2 Advantages of Digital over Analog Signal Processing 1.2 Classification of signals 1.2.1 Multichannel and multidimensional signals 1.2.2 Continuous-Time Versus Discrete-Time Signals 1.2.3 Continuous-Valued Versus Discrete-Valued Signals 10 1.2. 4 Deterministic Versus Random Signals 1.3 The Concept of Frequency in Continuous-Time and Discrete-Time Signals 12 1.3.1 Continuous-Time Sinusoidal signals 12 1.3.2 Discrete-Time Sinusoidal signals 1.3.3 Harmonically Related Complex Exponentials 1.4 Analog-to-Digital and Digital-to-Analog Conversion 1.4.1 Sampling of Analog Signals 21 1. 4.2 The Sampling Theorem 26 1.4.3 Quantization of Continuous-Amplitude Signals 31 1.4. 4 Quantization of Sinusoidal Signals 1.4.5 Coding of Quantized Samples 35 1.4.6 Digital-to-Analog Conversion 36 1.4.7 Analysis of Digital Signals and Systems Versus Discrete-Time Signals 36 and systems 1.5 Summary and References 37 Problems 37 VI Contents 2 Discrete-Time Signals and Systems 41 2.1 Discrete-Time signals 42 2.1.1 Some Elementary discrete-Time Signals 43 2.1.2 Classification of Discrete-Time signals 45 2. 1.3 Simple manipulations of discrete- Time signals 50 2.2 Discrete-Time Systems 53 2.2.1 Input-Output Description of Systems 2.2.2 Block Diagram Representation of Discrete-Time Systems 2.2.3 Classification of Discrete-Time Systems 2.2.4 Interconnection of Discrete-Time Systems 2.3 Analysis of discrete-Time Linear Time-Invariant Systems 69 2.3. 1 Techniques for the analysis of Linear systems 2.3.2 Resolution of a discrete-Time signal into Impulses 71 2.3.3 Response of Lti Systems to Arbitrary Inputs: The Convolution Sum 73 2.3.4 Properties of Convolution and the interconnection of lti Systems 80 2.3.5 Causal Linear Time-Invariant systems 83 2.3.6 Stability of Linear Time-Invariant Systems 85 23.7 Systems with Finite-Duration and Infinite-Duration Impulse 88 R esponse 2.4 Discrete- Time Systems described by difference equations 89 2.4.1 Recursive and nonrecursive discrete-Time Systems 90 2.4.2 Linear Time-Invariant Systems Characterized by 93 Constant-Coefficient Difference Equations 2.4.3 Solution of Linear Constant-Coefficient Difference Equations 98 2.4.4 The Impulse Response of a Linear Time-Invariant Recursive System 106 2.5 Implementation of Discrete-Time Systems 109 2.5.1 Structures for the Realization of Linear Time-Invariant systems 2.5.2 Recursive and Nonrecursive Realizations of FIr Systems 113 2.6 Correlation of Discrete-Time Signals 116 2.6. 1 Crosscorrelation and Autocorrelation Sequences 118 2.6.2 Properties of the Autocorrelation and Crosscorrelation Sequences 120 2.6.3 Correlation of Periodic Sequences 123 2.6.4 Input-Output Correlation Sequences 125 2.7 Summary nd References 128 Problems 129 ontents VIl 3 The z-Transform and Its application to the analysis of LTI 147 Systems 3.1 The z-Transform 147 3. 1. 1 The direct z-Transfo 147 3.1.2 The Inverse z-Transform 156 3.2 Properties of the z-Transform 157 3.3 Rational z-Transforms 170 3.3.1 Poles and zeros 170 3.3.2 Pole Location and Time-Domain behavior for Causal signals 174 3.3.3 The System Function of a linear Time-Invariant system 177 3. 4 Inversion of the z-Transform 180 3.4.1 The Inverse z-Transform by Contour Integration 180 3.4.2 The Inverse z-Transform by Power Series Expansion 182 3.4.3 The Inverse z-Transform by Partial-Fraction Expansion 184 3.4.4 Decomposition of Rational z- Transforms 192 3.5 Analysis of Linear Time-Invariant Systems in the z-Domain 193 3.5.1 Response of Systems with Rational System Functions 194 3.5.2 Transient and Steady-State Responses 195 3.5.3 Causality and stability 196 3.5.4 Pole-Zero cancellations 198 3.5.5 Multiple-Order Poles and Stability 200 3.5.6 Stability of Second-Order Systems 201 3.6 The one-sided z-Transform 205 3.6.1 Definition and Properties 206 3.6.2 Solution of Difference Equations 210 3.6.3 Response of Pole-Zero Systems with Nonzero Initial Conditions 211 3.7 Summary and References 214 Problems 214 Frequency Analysis of Signals 224 Frequency Analysis of Continuous-Time signals 225 4.1. 1 The Fourier Series for Continuous- Time Periodic Signals 226 4.1. 2 Power Density Spectrum of Periodic Signals 230 4.1.3 The Fourier Transform for Continuous-Time aperiodic signals 234 4.1.4 Energy Density Spectrum of Aperiodic Signal 238 VIll Contents 4. 2 Frequency Analysis of Discrete-Time Signals 241 4.2.1 The Fourier Series for Discrete-Time Periodic Signals 241 4.2.2 Power Density Spectrum of Periodic Signals 245 4.2.3 The Fourier Transform of Discrete-Time aperiodic signals 248 4.2.4 Convergence of the Fourier Transform 251 4.2.5 Energy Density Spectrum of Aperiodic Signals 254 4.2.6 Relationship of the Fourier Transform to the z-Transform 259 4.2.7 The Cepstrum 261 4.2.8 The Fourier Transform of Signals with Poles on the Unit Circle 262 4.2.9 Frequency-Domain Classification of Signals: The Concept of 265 Bandwidth 4.2.10 The Frequency Ranges of Some Natural Signals 267 4.3 Frequency-Domain and Time-Domain Signal Properties 268 4.4 Properties of the Fourier Transform for Discrete-Time Signals 4.4.1 Symmetry Properties of the Fourier Transform 4.4.2 Fourier Transform Theorems and properties 279 4.5 Summary and References 291 Problems 292 5 Frequency-Domain Analysis of LTI Systems 300 5.1 Frequency-Domain Characteristics of Linear Time-Invariant Systems 300 5.1.1 Response to Complex Exponential and Sinusoidal Signals: The 301 Frequency Response Function 5.1.2 Steady-State and Transient Response to Sinusoidal Input Signals 310 5.1.3 Steady-State Response to Periodic Input Signals 311 5.1. 4 Response to aperiodic Input signals 312 5.2 Frequency Response of LTI Systems 314 5.2. 1 Frequency Response of a System with a Rational System Function 314 5.2.2 Computation of the Frequency Response Function 317 5.3 Correlation Functions and Spectra at the Output of LTI Systems 321 5.3.1 Input-Output Correlation Functions and Spectra 322 5.3.2 Correlation Functions and Power Spectra for Random Input signals 323 5.4 Linear Time- Invariant Systems as Frequency-Selective Filters 326 5.4.1 Ideal filter Characteristics 327 5.4.2 Lowpass, Highpass, and Bandpass filters 329 5.4.3 Digital Resonators 335 5.4.4 Notch Filters 339 5.4.5 Comb Filters 341 Contents Ix 5.4.6 All-Pass Filters 345 5.4.7 Digital Sinusoidal Oscillators 347 5.5 Inverse Systems and Deconvolution 349 5.5.1 Invertibility of Linear Time-Invariant Systems 350 5.5.2 Minimum-Phase, Maximum- Phase, and Mixed-Phase Systems 354 5.5.3 System Identification and Deconvolution 358 5.5.4 Homomorphic Deconvolution 360 5.6 Summary and References 362 Problems 363 6 Sampling and Reconstruction of Signals 384 6.1 Ideal Sampling and Reconstruction of Continuous-Time Signals 384 6.2 Discrete- Time Processing of Continuous- Time signals 395 6.3 Analog-to-Digital and Digital-to-Analog Converters 401 6.3.1 Analog-to-Digital Converters 401 6.3.2 Quantization and Coding 403 6.3.3 Analysis of Quantization Errors 406 6.3.4 Digital-to-Analog Converters 408 6.4 Sampling and reconstruction of Continuous Time bandpass signals 410 6.4.1 Uniform or First-Order Sampling 411 6.4.2 Interleaved or Nonuniform Second-Order Sampling 416 6.4.3 Bandpass Signal Representations 422 6. 4.4 Sampling using Bandpass Signal Representations 426 6.5 Sampling of Discrete-Time Signals 427 6.5.1 Sampling and Interpolation of Discrete-Time Signals 427 6.5.2 Representation and Sampling of Bandpass Discrete-Time Signals 430 6.6 Oversampling A/D and D/A Converters 433 6.6.1 Oversampling A/D Converters 433 6.6.2 Oversampling D/A Converters 439 6.7 Summary and References 440 Problems X Contents 7 The Discrete Fourier Transform: Its Properties and Applications 449 7.1 Frequency-Domain Sampling: The Discrete Fourier Transform 449 7.1.1 Frequency-Domain Sampling and Reconstruction of Discrete-Time 449 Signals 7. 1.2 The Discrete Fourier Transform (DFT) 454 7.1.3 The dft as a Linear fransformation 459 7.1.4 Relationship of the DFT to Other Transforms 461 7.2 Properties of the DFT 464 7. 2.1 Periodicity, Linearity, and Symmetry Properties 465 7.2.2 Multiplication of Two DFTs and Circular Convolution 471 7.2.3 Additional DFT Properties 476 7.3 Linear Filtering Methods Based on the DFT 480 7.3.1 Use of the DFT in Linear Filtering 481 7.3.2 Filtering of Long Data Sequences 485 7.4 Frequency analysis of signals Using the dft 488 7. 5 The Discrete Cosine Transform 495 7.5.1 Forward DCT 495 7.5.2 Inverse dCT 497 7.5.3 DCT as an Orthogonal transform 498 7.6 Summary and References 501 Problems 502 8 Efficient Computation of the DFT: Fast Fourier Transform 511 Algorithms 8.1 Efficient Computation of the dft: FFT algorithms 511 8.1.1 Direct Computation of the DFT 8.1.2 Divide-and-Conquer Approach to Computation of the DFT 513 8.1.3 Radix-2 FFT Algorithms 519 8.1.4 Radix-4 FFT Algorithms 527 8.1.5 Split-Radix FFt algorithms 532 8.1.6 Implementation of FFT algorithms 536 8.2 Applications of FFT Algorithms 538 8.2.1 Efficient Computation of the dFt of Two Real sequences 538 8.2.2 Efficient Computation of the DFT of a 2N-Point Real Sequence 539 8.2.3 Use of the FFT Algorithm in Linear Filtering and Correlation 540 【实例截图】
【核心代码】
标签:
小贴士
感谢您为本站写下的评论,您的评论对其它用户来说具有重要的参考价值,所以请认真填写。
- 类似“顶”、“沙发”之类没有营养的文字,对勤劳贡献的楼主来说是令人沮丧的反馈信息。
- 相信您也不想看到一排文字/表情墙,所以请不要反馈意义不大的重复字符,也请尽量不要纯表情的回复。
- 提问之前请再仔细看一遍楼主的说明,或许是您遗漏了。
- 请勿到处挖坑绊人、招贴广告。既占空间让人厌烦,又没人会搭理,于人于己都无利。
关于好例子网
本站旨在为广大IT学习爱好者提供一个非营利性互相学习交流分享平台。本站所有资源都可以被免费获取学习研究。本站资源来自网友分享,对搜索内容的合法性不具有预见性、识别性、控制性,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,平台无法对用户传输的作品、信息、内容的权属或合法性、安全性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论平台是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二与二十三条之规定,若资源存在侵权或相关问题请联系本站客服人员,点此联系我们。关于更多版权及免责申明参见 版权及免责申明
网友评论
我要评论